

Welcome to rocSOLVER’s documentation!

Legal Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. In addition, any stated support is planned and is also subject to change. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

Contents

rocSOLVER’s documentation consists of 3 main Chapters. The User Guide is the starting point for
new users of the library, and a basic reference for current users and/or users of LAPACK. Advanced users and developers who want to further understand or extend the
rocSOLVER library may wish to refer to the Library Design Guide. For a list of currently implemented routines, and a description of each’s functionality and input and output parameters,
see the rocSOLVER API.

	1. rocSOLVER User Guide

	2. rocSOLVER Library Design Guide

	3. rocSOLVER API

	4. License & Attributions

1. rocSOLVER User Guide

	1.1. Introduction
	1.1.1. Library overview

	1.1.2. Currently implemented functionality
	LAPACK auxiliary functions

	LAPACK main functions

	LAPACK-like functions

	1.2. Building and Installation
	1.2.1. Prerequisites

	1.2.2. Installing from pre-built packages

	1.2.3. Building & installing from source
	Using the install.sh script

	Manual building and installation

	1.3. Using rocSOLVER
	1.3.1. QR factorization of a single matrix

	1.3.2. QR factorization of a batch of matrices
	Strided_batched version

	Batched version

	1.4. Memory Model
	1.4.1. Automatic workspace

	1.4.2. User-managed workspace
	Minimum required size

	Using an environment variable

	Using helper functions

	1.4.3. User-owned workspace

	1.5. Multi-level Logging
	1.5.1. Logging modes
	Trace logging

	Bench logging

	Profile logging

	1.5.2. Initialization and set-up

	1.5.3. Example code

	1.5.4. Kernel logging

	1.5.5. Multiple host threads

	1.6. Clients
	1.6.1. Testing rocSOLVER

	1.6.2. Benchmarking rocSOLVER

	1.6.3. rocSOLVER sample code

1.1. Introduction

Table of contents

	Library overview

	Currently implemented functionality

	LAPACK auxiliary functions

	LAPACK main functions

	LAPACK-like functions

1.1.1. Library overview

rocSOLVER is an implementation of LAPACK routines [https://www.netlib.org/lapack/explore-html/modules.html]
on top of the AMD’s open source ROCm platform [https://rocmdocs.amd.com/en/latest/index.html]. rocSOLVER is implemented in the
HIP programming language [https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html] and optimized for AMD’s
latest discrete GPUs [https://www.amd.com/en/products/server-accelerators/instinct-mi100].

1.1.2. Currently implemented functionality

The rocSOLVER library is in the early stages of active development. New features are being
continuously added, with new functionality documented at each release of the ROCm platform [https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-Release-Notes.html].

The following tables summarize the LAPACK functionality implemented for the different supported precisions in rocSOLVER’s latest release.
All LAPACK and LAPACK-like main functions include _batched and _strided_batched versions. For a complete description of the listed
routines, please see the rocSOLVER API document.

LAPACK auxiliary functions

Vector and matrix manipulations

	Function

	single

	double

	single complex

	double complex

	rocsolver_lacgv

	x

	x

	x

	x

	rocsolver_laswp

	x

	x

	x

	x

Householder reflections

	Function

	single

	double

	single complex

	double complex

	rocsolver_larfg

	x

	x

	x

	x

	rocsolver_larf

	x

	x

	x

	x

	rocsolver_larft

	x

	x

	x

	x

	rocsolver_larfb

	x

	x

	x

	x

Bidiagonal forms

	Function

	single

	double

	single complex

	double complex

	rocsolver_labrd

	x

	x

	x

	x

	rocsolver_bdsqr

	x

	x

	x

	x

Tridiagonal forms

	Function

	single

	double

	single complex

	double complex

	rocsolver_sterf

	x

	x

	
	

	rocsolver_latrd

	x

	x

	x

	x

	rocsolver_steqr

	x

	x

	x

	x

	rocsolver_stedc

	x

	x

	x

	x

Symmetric matrices

	Function

	single

	double

	single complex

	double complex

	rocsolver_lasyf

	x

	x

	x

	x

Orthonormal matrices

	Function

	single

	double

	single complex

	double complex

	rocsolver_org2r

	x

	x

	
	

	rocsolver_orgqr

	x

	x

	
	

	rocsolver_orgl2

	x

	x

	
	

	rocsolver_orglq

	x

	x

	
	

	rocsolver_org2l

	x

	x

	
	

	rocsolver_orgql

	x

	x

	
	

	rocsolver_orgbr

	x

	x

	
	

	rocsolver_orgtr

	x

	x

	
	

	rocsolver_orm2r

	x

	x

	
	

	rocsolver_ormqr

	x

	x

	
	

	rocsolver_orml2

	x

	x

	
	

	rocsolver_ormlq

	x

	x

	
	

	rocsolver_orm2l

	x

	x

	
	

	rocsolver_ormql

	x

	x

	
	

	rocsolver_ormbr

	x

	x

	
	

	rocsolver_ormtr

	x

	x

	
	

Unitary matrices

	Function

	single

	double

	single complex

	double complex

	rocsolver_ung2r

	
	
	x

	x

	rocsolver_ungqr

	
	
	x

	x

	rocsolver_ungl2

	
	
	x

	x

	rocsolver_unglq

	
	
	x

	x

	rocsolver_ung2l

	
	
	x

	x

	rocsolver_ungql

	
	
	x

	x

	rocsolver_ungbr

	
	
	x

	x

	rocsolver_ungtr

	
	
	x

	x

	rocsolver_unm2r

	
	
	x

	x

	rocsolver_unmqr

	
	
	x

	x

	rocsolver_unml2

	
	
	x

	x

	rocsolver_unmlq

	
	
	x

	x

	rocsolver_unm2l

	
	
	x

	x

	rocsolver_unmql

	
	
	x

	x

	rocsolver_unmbr

	
	
	x

	x

	rocsolver_unmtr

	
	
	x

	x

LAPACK main functions

Triangular factorizations

	Function

	single

	double

	single complex

	double complex

	rocsolver_potf2

	x

	x

	x

	x

	rocsolver_potrf

	x

	x

	x

	x

	rocsolver_getf2

	x

	x

	x

	x

	rocsolver_getrf

	x

	x

	x

	x

	rocsolver_sytf2

	x

	x

	x

	x

	rocsolver_sytrf

	x

	x

	x

	x

Orthogonal factorizations

	Function

	single

	double

	single complex

	double complex

	rocsolver_geqr2

	x

	x

	x

	x

	rocsolver_geqrf

	x

	x

	x

	x

	rocsolver_gerq2

	x

	x

	x

	x

	rocsolver_gerqf

	x

	x

	x

	x

	rocsolver_gelq2

	x

	x

	x

	x

	rocsolver_gelqf

	x

	x

	x

	x

	rocsolver_geql2

	x

	x

	x

	x

	rocsolver_geqlf

	x

	x

	x

	x

Problem and matrix reductions

	Function

	single

	double

	single complex

	double complex

	rocsolver_sytd2

	x

	x

	
	

	rocsolver_sytrd

	x

	x

	
	

	rocsolver_sygs2

	x

	x

	
	

	rocsolver_sygst

	x

	x

	
	

	rocsolver_hetd2

	
	
	x

	x

	rocsolver_hetrd

	
	
	x

	x

	rocsolver_hegs2

	
	
	x

	x

	rocsolver_hegst

	
	
	x

	x

	rocsolver_gebd2

	x

	x

	x

	x

	rocsolver_gebrd

	x

	x

	x

	x

Linear-systems solvers

	Function

	single

	double

	single complex

	double complex

	rocsolver_trtri

	x

	x

	x

	x

	rocsolver_getri

	x

	x

	x

	x

	rocsolver_getrs

	x

	x

	x

	x

	rocsolver_gesv

	x

	x

	x

	x

	rocsolver_potri

	x

	x

	x

	x

	rocsolver_potrs

	x

	x

	x

	x

	rocsolver_posv

	x

	x

	x

	x

Least-square solvers

	Function

	single

	double

	single complex

	double complex

	rocsolver_gels

	x

	x

	x

	x

Symmetric eigensolvers

	Function

	single

	double

	single complex

	double complex

	rocsolver_syev

	x

	x

	
	

	rocsolver_syevd

	x

	x

	
	

	rocsolver_sygv

	x

	x

	
	

	rocsolver_sygvd

	x

	x

	
	

	rocsolver_heev

	
	
	x

	x

	rocsolver_heevd

	
	
	x

	x

	rocsolver_hegv

	
	
	x

	x

	rocsolver_hegvd

	
	
	x

	x

Singular value decomposition

	Function

	single

	double

	single complex

	double complex

	rocsolver_gesvd

	x

	x

	x

	x

LAPACK-like functions

Triangular factorizations

	Function

	single

	double

	single complex

	double complex

	rocsolver_getf2_npvt

	x

	x

	x

	x

	rocsolver_getrf_npvt

	x

	x

	x

	x

Linear-systems solvers

	Function

	single

	double

	single complex

	double complex

	rocsolver_getri_npvt

	x

	x

	x

	x

	rocsolver_getri_outofplace

	x

	x

	x

	x

	rocsolver_getri_npvt_outofplace

	x

	x

	x

	x

1.2. Building and Installation

Table of contents

	Prerequisites

	Installing from pre-built packages

	Building & installing from source

	Using the install.sh script

	Manual building and installation

1.2.1. Prerequisites

rocSOLVER requires a ROCm-enabled platform. For more information, see the
ROCm install guide [https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html].

rocSOLVER also requires a compatible version of rocBLAS installed on the system.
For more information, see the rocBLAS install guide [https://rocblas.readthedocs.io/en/master/install.html].

rocBLAS and rocSOLVER are both still under active development, and it is hard to define minimal
compatibility versions. For now, a good rule of thumb is to always use rocSOLVER together with the
matching rocBLAS version. For example, if you want to install rocSOLVER from the ROCm 3.3 release, then
be sure that the ROCm 3.3 version of rocBLAS is also installed; if you are building the rocSOLVER branch
tip, then you will need to build and install the rocBLAS branch tip as well.

1.2.2. Installing from pre-built packages

If you have added the ROCm repositories to your Linux distribution, the latest release version of
rocSOLVER can be installed using a package manager. On Ubuntu, for example, use the commands:

sudo apt-get update
sudo apt-get install rocsolver

1.2.3. Building & installing from source

The rocSOLVER source code [https://github.com/ROCmSoftwarePlatform/rocSOLVER.git] is hosted
on GitHub. Download the code and checkout the desired branch using:

git clone -b <desired_branch_name> https://github.com/ROCmSoftwarePlatform/rocSOLVER.git
cd rocSOLVER

To build from source, some external dependencies such as CMake and Python are required. Additionally, if the library clients
are to be built (by default they are not), then LAPACK and GoogleTest will be also required. (The library clients, rocsolver-test and rocsolver-bench,
provide the infrastructure for testing and benchmarking rocSOLVER. For more details see the clients section of this user’s guide).

Using the install.sh script

It is recommended that the provided install.sh script be used to build and install rocSOLVER. The command

./install.sh --help

gives detailed information on how to use this installation script.

Next, some common use cases are listed:

./install.sh

This command builds rocSOLVER and puts the generated library files, such as headers and
librocsolver.so, in the output directory: rocSOLVER/build/release/rocsolver-install.
Other output files from the configuration and building process can also be found in the
rocSOLVER/build and rocSOLVER/build/release directories. It is assumed that all
external library dependencies have been installed. It also assumes that the rocBLAS library
is located at /opt/rocm/rocblas.

./install.sh -g

Use the -g flag to build in debug mode. In this case the generated library files will be located at
rocSOLVER/build/debug/rocsolver-install.
Other output files from the configuration
and building process can also be found
in the rocSOLVER/build and rocSOLVER/build/debug directories.

./install.sh --lib_dir /home/user/rocsolverlib --build_dir buildoutput

Use --lib_dir and --build_dir to
change output directories.
In this case, for example, the installer
will put the headers and library files in
/home/user/rocsolverlib, while the outputs
of the configuration and building processes will
be in rocSOLVER/buildoutput and rocSOLVER/buildoutput/release.
The selected output directories must be
local, otherwise the user may require sudo
privileges.
To install rocSOLVER system-wide, we
recommend the use of the -i flag as shown
below.

./install.sh --rocblas_dir /alternative/rocblas/location

Use --rocblas_dir to change where the
build system will search for the rocBLAS library.
In this case, for example, the installer
will look for the rocBLAS library at
/alternative/rocblas/location.

./install.sh -s

With the -s flag, the installer will
generate a static library
(librocsolver.a) instead.

./install.sh -d

With the -d flag, the installer will first
install all the external dependencies
required by the rocSOLVER library in
/usr/local.
This flag only needs to be used once. For
subsequent invocations of install.sh it is
not necessary to rebuild the dependencies.

./install.sh -c

With the -c flag, the installer will
additionally build the library clients
rocsolver-bench and
rocsolver-test.
The binaries will be located at
rocSOLVER/build/release/clients/staging.
It is assumed that all external dependencies
for the client have been installed.

./install.sh -dc

By combining the -c and -d flags, the installer
will also install all the external
dependencies required by rocSOLVER clients.
Again, the -d flag only needs to be used once.

./install.sh -i

With the -i flag, the installer will
additionally
generate a pre-built rocSOLVER package and
install it, using a suitable package
manager, at the standard location:
/opt/rocm/rocsolver.
This is the preferred approach to install
rocSOLVER on a system, as it will allow
the library to be safely removed using the
package manager.

./install.sh -p

With the -p flag, the installer will also
generate the rocSOLVER package, but it will
not be installed.

./install.sh -i --install_dir /package/install/path

When generating a package, use --install_dir to change the directory where
it will be installed.
In this case, for example, the rocSOLVER
package will be installed at
/package/install/path.

Manual building and installation

Manual installation of all the external dependencies is not an easy task. Get more information on
how to install each dependency at the corresponding documentation sites:

	CMake [https://cmake.org/] (version 3.16 is recommended).

	LAPACK [https://github.com/Reference-LAPACK/lapack-release] (which internally depends on a Fortran compiler), and

	GoogleTest [https://github.com/google/googletest]

	fmt [https://github.com/fmtlib/fmt]

Once all dependencies are installed (including ROCm and rocBLAS), rocSOLVER can be manually built using a combination of CMake and Make commands.
Using CMake options can provide more flexibility in tailoring the building and installation process. Here we provide a list of examples
of common use cases (see the CMake documentation for more information on CMake options).

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install ../..
make install

This is equivalent to ./install.sh.

mkdir -p buildoutput/release && cd buildoutput/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=/home/user/rocsolverlib ../..
make install

This is equivalent to ./install.sh --lib_dir /home/user/rocsolverlib --build_dir buildoutput.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -Drocblas_DIR=/alternative/rocblas/location ../..
make install

This is equivalent to ./install.sh --rocblas_dir /alternative/rocblas/location.

mkdir -p build/debug && cd build/debug
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCMAKE_BUILD_TYPE=Debug ../..
make install

This is equivalent to ./install.sh -g.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DBUILD_SHARED_LIBS=OFF ../..
make install

This is equivalent to ./install.sh -s.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DBUILD_CLIENTS_TESTS=ON -DBUILD_CLIENTS_BENCHMARKS=ON ../..
make install

This is equivalent to ./install.sh -c.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCPACK_SET_DESTDIR=OFF -DCPACK_PACKAGING_INSTALL_PREFIX=/opt/rocm ../..
make install
make package

This is equivalent to ./install.sh -p.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCPACK_SET_DESTDIR=OFF -DCPACK_PACKAGING_INSTALL_PREFIX=/package/install/path ../..
make install
make package
sudo dpkg -i rocsolver[-_]*.deb

On an Ubuntu system, for example, this would be equivalent to ./install.sh -i --install_dir /package/install/path.

1.3. Using rocSOLVER

Once installed, rocSOLVER can be used just like any other library with a C API.
The header file will need to be included in the user code, and both the rocBLAS and rocSOLVER shared libraries
will become link-time and run-time dependencies for the user application.

Next, some examples are used to illustrate the basic use of rocSOLVER API and rocSOLVER batched API.

Table of contents

	QR factorization of a single matrix

	QR factorization of a batch of matrices

	Strided_batched version

	Batched version

1.3.1. QR factorization of a single matrix

The following code snippet uses rocSOLVER to compute the QR factorization of a general m-by-n real matrix in double precision.
For a full description of the used rocSOLVER routine, see the API documentation here: rocsolver_dgeqrf().

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorization of a matrix on the GPU

double *create_example_matrix(rocblas_int *M_out,
 rocblas_int *N_out,
 rocblas_int *lda_out) {
 // a *very* small example input; not a very efficient use of the API
 const double A[3][3] = { { 12, -51, 4},
 { 6, 167, -68},
 { -4, 24, -41} };
 const rocblas_int M = 3;
 const rocblas_int N = 3;
 const rocblas_int lda = 3;
 *M_out = M;
 *N_out = N;
 *lda_out = lda;
 // note: rocsolver matrices must be stored in column major format,
 // i.e. entry (i,j) should be accessed by hA[i + j*lda]
 double *hA = (double*)malloc(sizeof(double)*lda*N);
 for (size_t i = 0; i < M; ++i) {
 for (size_t j = 0; j < N; ++j) {
 // copy A (2D array) into hA (1D array, column-major)
 hA[i + j*lda] = A[i][j];
 }
 }
 return hA;
}

// We use rocsolver_dgeqrf to factor a real M-by-N matrix, A.
// See https://rocsolver.readthedocs.io/en/latest/api_lapackfunc.html#c.rocsolver_dgeqrf
// and https://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html
int main() {
 rocblas_int M; // rows
 rocblas_int N; // cols
 rocblas_int lda; // leading dimension
 double *hA = create_example_matrix(&M, &N, &lda); // input matrix on CPU

 // let's print the input matrix, just to see it
 printf("A = [\n");
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% .3f ", hA[i + j*lda]);
 }
 printf(";\n");
 }
 printf("]\n");

 // initialization
 rocblas_handle handle;
 rocblas_create_handle(&handle);

 // Some rocsolver functions may trigger rocblas to load its GEMM kernels.
 // You can preload the kernels by explicitly invoking rocblas_initialize
 // (e.g., to exclude one-time initialization overhead from benchmarking).

 // preload rocBLAS GEMM kernels (optional)
 // rocblas_initialize();

 // calculate the sizes of our arrays
 size_t size_A = lda * (size_t)N; // count of elements in matrix A
 size_t size_piv = (M < N) ? M : N; // count of Householder scalars

 // allocate memory on GPU
 double *dA, *dIpiv;
 hipMalloc((void**)&dA, sizeof(double)*size_A);
 hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

 // copy data to GPU
 hipMemcpy(dA, hA, sizeof(double)*size_A, hipMemcpyHostToDevice);

 // compute the QR factorization on the GPU
 rocsolver_dgeqrf(handle, M, N, dA, lda, dIpiv);

 // copy the results back to CPU
 double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on CPU
 hipMemcpy(hA, dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
 hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);

 // the results are now in hA and hIpiv
 // we can print some of the results if we want to see them
 printf("R = [\n");
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% .3f ", (i <= j) ? hA[i + j*lda] : 0);
 }
 printf(";\n");
 }
 printf("]\n");

 // clean up
 free(hIpiv);
 hipFree(dA);
 hipFree(dIpiv);
 free(hA);
 rocblas_destroy_handle(handle);
}

The exact command used to compile the example above may vary depending on the
system environment, but here is a typical example:

/opt/rocm/bin/hipcc -I/opt/rocm/include -c example.c
/opt/rocm/bin/hipcc -o example -L/opt/rocm/lib -lrocsolver -lrocblas example.o

1.3.2. QR factorization of a batch of matrices

One of the advantages of using GPUs is the ability to execute in parallel many operations of the same type but on different data sets.
Based on this idea, rocSOLVER and rocBLAS provide a batch version of most of their routines. These batch versions allow the user to execute
the same operation on a set of different matrices and/or vectors with a single library call. For more details on the approach to batch
functionality followed in rocSOLVER, see Batched rocSOLVER.

Strided_batched version

The following code snippet uses rocSOLVER to compute the QR factorization of a series of general m-by-n real matrices in double precision.
The matrices must be stored in contiguous memory locations on the GPU, and are accessed by a pointer to the first matrix and a
stride value that gives the separation between one matrix and the next.
For a full description of the used rocSOLVER routine, see the API documentation here: rocsolver_dgeqrf_strided_batched().

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorizations of an array of matrices on the GPU

double *create_example_matrices(rocblas_int *M_out,
 rocblas_int *N_out,
 rocblas_int *lda_out,
 rocblas_stride *strideA_out,
 rocblas_int *batch_count_out) {
 const double A[2][3][3] = {
 // First input matrix
 { { 12, -51, 4},
 { 6, 167, -68},
 { -4, 24, -41} },

 // Second input matrix
 { { 3, -12, 11},
 { 4, -46, -2},
 { 0, 5, 15} } };

 const rocblas_int M = 3;
 const rocblas_int N = 3;
 const rocblas_int lda = 3;
 const rocblas_stride strideA = lda * N;
 const rocblas_int batch_count = 2;
 *M_out = M;
 *N_out = N;
 *lda_out = lda;
 *strideA_out = strideA;
 *batch_count_out = batch_count;

 // allocate space for input matrix data on CPU
 double *hA = (double*)malloc(sizeof(double)*strideA*batch_count);

 // copy A (3D array) into hA (1D array, column-major)
 for (size_t b = 0; b < batch_count; ++b)
 for (size_t i = 0; i < M; ++i)
 for (size_t j = 0; j < N; ++j)
 hA[i + j*lda + b*strideA] = A[b][i][j];

 return hA;
}

// Use rocsolver_dgeqrf_strided_batched to factor an array of real M-by-N matrices.
int main() {
 rocblas_int M; // rows
 rocblas_int N; // cols
 rocblas_int lda; // leading dimension
 rocblas_stride strideA; // stride from start of one matrix to the next
 rocblas_int batch_count; // number of matricies
 double *hA = create_example_matrices(&M, &N, &lda, &strideA, &batch_count);

 // print the input matrices
 for (size_t b = 0; b < batch_count; ++b) {
 printf("A[%zu] = [\n", b);
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% 4.f ", hA[i + j*lda + strideA*b]);
 }
 printf(";\n");
 }
 printf("]\n");
 }

 // initialization
 rocblas_handle handle;
 rocblas_create_handle(&handle);

 // preload rocBLAS GEMM kernels (optional)
 // rocblas_initialize();

 // calculate the sizes of our arrays
 size_t size_A = strideA * (size_t)batch_count; // elements in array for matrices
 rocblas_stride strideP = (M < N) ? M : N; // stride of Householder scalar sets
 size_t size_piv = strideP * (size_t)batch_count; // elements in array for Householder scalars

 // allocate memory on GPU
 double *dA, *dIpiv;
 hipMalloc((void**)&dA, sizeof(double)*size_A);
 hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

 // copy data to GPU
 hipMemcpy(dA, hA, sizeof(double)*size_A, hipMemcpyHostToDevice);

 // compute the QR factorizations on the GPU
 rocsolver_dgeqrf_strided_batched(handle, M, N, dA, lda, strideA, dIpiv, strideP, batch_count);

 // copy the results back to CPU
 double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on CPU
 hipMemcpy(hA, dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
 hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);

 // the results are now in hA and hIpiv
 // print some of the results
 for (size_t b = 0; b < batch_count; ++b) {
 printf("R[%zu] = [\n", b);
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% 4.f ", (i <= j) ? hA[i + j*lda + strideA*b] : 0);
 }
 printf(";\n");
 }
 printf("]\n");
 }

 // clean up
 free(hIpiv);
 hipFree(dA);
 hipFree(dIpiv);
 free(hA);
 rocblas_destroy_handle(handle);
}

Batched version

The following code snippet uses rocSOLVER to compute the QR factorization of a series of general m-by-n real matrices in double precision.
The matrices do not need to be in contiguous memory locations on the GPU, and will be accessed by an array of pointers.
For a full description of the used rocSOLVER routine, see the API documentation here: rocsolver_dgeqrf_batched.

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorizations of a batch of matrices on the GPU

double **create_example_matrices(rocblas_int *M_out,
 rocblas_int *N_out,
 rocblas_int *lda_out,
 rocblas_int *batch_count_out) {
 // a small example input
 const double A[2][3][3] = {
 // First input matrix
 { { 12, -51, 4},
 { 6, 167, -68},
 { -4, 24, -41} },

 // Second input matrix
 { { 3, -12, 11},
 { 4, -46, -2},
 { 0, 5, 15} } };

 const rocblas_int M = 3;
 const rocblas_int N = 3;
 const rocblas_int lda = 3;
 const rocblas_int batch_count = 2;
 *M_out = M;
 *N_out = N;
 *lda_out = lda;
 *batch_count_out = batch_count;

 // allocate space for input matrix data on CPU
 double **hA = (double**)malloc(sizeof(double*)*batch_count);
 hA[0] = (double*)malloc(sizeof(double)*lda*N);
 hA[1] = (double*)malloc(sizeof(double)*lda*N);

 for (size_t b = 0; b < batch_count; ++b)
 for (size_t i = 0; i < M; ++i)
 for (size_t j = 0; j < N; ++j)
 hA[b][i + j*lda] = A[b][i][j];

 return hA;
}

// Use rocsolver_dgeqrf_batched to factor a batch of real M-by-N matrices.
int main() {
 rocblas_int M; // rows
 rocblas_int N; // cols
 rocblas_int lda; // leading dimension
 rocblas_int batch_count; // number of matricies
 double **hA = create_example_matrices(&M, &N, &lda, &batch_count);

 // print the input matrices
 for (size_t b = 0; b < batch_count; ++b) {
 printf("A[%zu] = [\n", b);
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% 4.f ", hA[b][i + j*lda]);
 }
 printf(";\n");
 }
 printf("]\n");
 }

 // initialization
 rocblas_handle handle;
 rocblas_create_handle(&handle);

 // preload rocBLAS GEMM kernels (optional)
 // rocblas_initialize();

 // calculate the sizes of the arrays
 size_t size_A = lda * (size_t)N; // count of elements in each matrix A
 rocblas_stride strideP = (M < N) ? M : N; // stride of Householder scalar sets
 size_t size_piv = strideP * (size_t)batch_count; // elements in array for Householder scalars

 // allocate memory on the CPU for an array of pointers,
 // then allocate memory for each matrix on the GPU.
 double **A = (double**)malloc(sizeof(double*)*batch_count);
 for (rocblas_int b = 0; b < batch_count; ++b)
 hipMalloc((void**)&A[b], sizeof(double)*size_A);

 // allocate memory on GPU for the array of pointers and Householder scalars
 double **dA, *dIpiv;
 hipMalloc((void**)&dA, sizeof(double*)*batch_count);
 hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

 // copy each matrix to the GPU
 for (rocblas_int b = 0; b < batch_count; ++b)
 hipMemcpy(A[b], hA[b], sizeof(double)*size_A, hipMemcpyHostToDevice);

 // copy the array of pointers to the GPU
 hipMemcpy(dA, A, sizeof(double*)*batch_count, hipMemcpyHostToDevice);

 // compute the QR factorizations on the GPU
 rocsolver_dgeqrf_batched(handle, M, N, dA, lda, dIpiv, strideP, batch_count);

 // copy the results back to CPU
 double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on CPU
 hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);
 for (rocblas_int b = 0; b < batch_count; ++b)
 hipMemcpy(hA[b], A[b], sizeof(double)*size_A, hipMemcpyDeviceToHost);

 // the results are now in hA and hIpiv
 // print some of the results
 for (size_t b = 0; b < batch_count; ++b) {
 printf("R[%zu] = [\n", b);
 for (size_t i = 0; i < M; ++i) {
 printf(" ");
 for (size_t j = 0; j < N; ++j) {
 printf("% 4.f ", (i <= j) ? hA[b][i + j*lda] : 0);
 }
 printf(";\n");
 }
 printf("]\n");
 }

 // clean up
 free(hIpiv);
 for (rocblas_int b = 0; b < batch_count; ++b)
 free(hA[b]);
 free(hA);
 for (rocblas_int b = 0; b < batch_count; ++b)
 hipFree(A[b]);
 free(A);
 hipFree(dA);
 hipFree(dIpiv);
 rocblas_destroy_handle(handle);
}

1.4. Memory Model

Almost all LAPACK and rocSOLVER routines require workspace memory in order to compute their results.
In contrast to LAPACK, however, pointers to the workspace are not explicitly passed to rocSOLVER
functions as arguments; instead, they are managed behind-the-scenes using a configurable device memory
model.

rocSOLVER makes use of and is integrated with rocBLAS’s memory model [https://rocblas.readthedocs.io/en/latest/device_memory.html].
Workspace memory, and the scheme used to manage it, is tracked on a per-rocblas_handle basis, and
the same functionality that is used to manipulate rocBLAS’s workspace memory can and will also affect
rocSOLVER’s workspace memory.

There are 4 schemes for device memory management:

	Automatic (managed by rocSOLVER/rocBLAS): The default scheme. Device memory persists between function
calls and will be automatically reallocated if more memory is required by a function.

	User-managed (preallocated): The desired workspace size is specified by the user as an environment
variable before handle creation, and cannot be altered after the handle is created.

	User-managed (manual): The desired workspace size can be manipulated using rocBLAS helper functions.

	User-owned: The user manually allocates device memory and calls a rocBLAS helper function to use it
as the workspace.

Table of contents

	Automatic workspace

	User-managed workspace

	Minimum required size

	Using an environment variable

	Using helper functions

	User-owned workspace

1.4.1. Automatic workspace

By default, rocSOLVER will automatically allocate device memory to be used as internal workspace
using the rocBLAS memory model, and will increase the amount of allocated memory as needed by rocSOLVER
functions. If this scheme is in use, the function rocblas_is_managing_device_memory will return
true. In order to re-enable this scheme if it is not in use, a nullptr or zero size can be
passed to the helper functions rocblas_set_device_memory_size or rocblas_set_workspace.
For more details on these rocBLAS APIs, see the
rocBLAS documentation [https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions].

This scheme has the disadvantage that automatic reallocation is synchronizing, and the user cannot
control when this synchronization happens.

1.4.2. User-managed workspace

Alternatively, the user can manually specify an amount of memory to be allocated by rocSOLVER/rocBLAS.
This allows the user to control when and if memory is reallocated and synchronization occurs. However,
function calls will fail if there is not enough allocated memory.

Minimum required size

In order to choose an appropriate amount of memory to allocate, rocSOLVER can be queried to determine
the minimum amount of memory required for functions to complete. The query can be started by calling
rocblas_start_device_memory_size_query, followed by calls to the desired functions with appropriate
problem sizes (a null pointer can be passed to the device pointer arguments). A final call to
rocblas_stop_device_memory_size_query will return the minimum required size.

For example, the following code snippet will return the memory size required to solve a 1024*1024 linear
system with 1 right-hand side (involving calls to getrf and getrs):

size_t memory_size;
rocblas_start_device_memory_size_query(handle);
rocsolver_dgetrf(handle, 1024, 1024, nullptr, lda, nullptr, nullptr);
rocsolver_dgetrs(handle, rocblas_operation_none, 1024, 1, nullptr, lda, nullptr, nullptr, ldb);
rocblas_stop_device_memory_size_query(handle, &memory_size);

For more details on the rocBLAS APIs, see the
rocBLAS documentation [https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions].

Using an environment variable

The desired workspace size can be provided before creation of the rocblas_handle by setting the
value of environment variable ROCBLAS_DEVICE_MEMORY_SIZE. If this variable is unset or the value
is == 0, then it will be ignored. Note that a workspace size set in this way cannot be changed once
the handle has been created.

Using helper functions

Another way to set the desired workspace size is by using the helper function rocblas_set_device_memory_size.
This function is called after handle creation and can be called multiple times; however, it is
recommended to first synchronize the handle stream if a rocSOLVER or rocBLAS routine has already been
called. For example:

hipStream_t stream;
rocblas_get_stream(handle, &stream);
hipStreamSynchronize(stream);

rocblas_set_device_memory_size(handle, memory_size);

For more details on the rocBLAS APIs, see the
rocBLAS documentation [https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions].

1.4.3. User-owned workspace

Finally, the user may opt to manage the workspace memory manually using HIP. By calling the function
rocblas_set_workspace, the user may pass a pointer to device memory to rocBLAS that will be used
as the workspace for rocSOLVER. For example:

void* device_memory;
hipMalloc(&device_memory, memory_size);
rocblas_set_workspace(handle, device_memory, memory_size);

// perform computations here

rocblas_set_workspace(handle, nullptr, 0);
hipFree(device_memory);

For more details on the rocBLAS APIs, see the
rocBLAS documentation [https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions].

1.5. Multi-level Logging

Similar to rocBLAS logging [https://rocblas.readthedocs.io/en/latest/logging.html],
rocSOLVER provides logging facilities that can be used to output information
on rocSOLVER function calls. Three modes of logging are supported: trace logging, bench logging,
and profile logging.

Note that performance will degrade when logging is enabled.

Table of contents

	Logging modes

	Trace logging

	Bench logging

	Profile logging

	Initialization and set-up

	Example code

	Kernel logging

	Multiple host threads

1.5.1. Logging modes

Trace logging

Trace logging outputs a line each time an internal rocSOLVER or rocBLAS routine is called,
outputting the function name and the values of its arguments (excluding stride arguments). The
maximum depth of nested function calls that can appear in the log is specified by the user.

Bench logging

Bench logging outputs a line each time a public rocSOLVER routine is called (excluding
auxiliary library functions), outputting a line that can be used with the executable
rocsolver-bench to call the function with the same size arguments.

Profile logging

Profile logging, upon calling rocsolver_log_write_profile or rocsolver_log_flush_profile,
or terminating the logging session using rocsolver_log_end, will output statistics on each
called internal rocSOLVER and rocBLAS routine. These include the number of times each function
was called, the total program runtime occupied by the function, and the total program runtime
occupied by its nested function calls. As with trace logging, the maximum depth of nested output
is specified by the user. Note that, when profile logging is enabled, the stream will be synchronized
after every internal function call.

1.5.2. Initialization and set-up

In order to use rocSOLVER’s logging facilities, the user must first call rocsolver_log_begin
in order to allocate the internal data structures used for logging and begin the logging session.
The user may then specify a layer mode and max level depth, either programmatically using
rocsolver_log_set_layer_mode, rocsolver_log_set_max_levels, or by setting the corresponding
environment variables.

The layer mode specifies which logging type(s) are activated, and can be rocblas_layer_mode_none,
rocblas_layer_mode_log_trace, rocblas_layer_mode_log_bench, rocblas_layer_mode_log_profile,
or a bitwise combination of these. The max level depth specifies the default maximum depth of nested
function calls that may appear in the trace and profile logging.

Both the default layer mode and max level depth can be specified using environment variables.

	ROCSOLVER_LAYER

	ROCSOLVER_LEVELS

If these variables are not set, the layer mode will default to rocblas_layer_mode_none and the
max level depth will default to 1. These defaults can be restored by calling the function
rocsolver_log_restore_defaults.

ROCSOLVER_LAYER is a bitwise OR of zero or more bit masks as follows:

	If ROCSOLVER_LAYER is not set, then there is no logging

	If (ROCSOLVER_LAYER & 1) != 0, then there is trace logging

	If (ROCSOLVER_LAYER & 2) != 0, then there is bench logging

	If (ROCSOLVER_LAYER & 4) != 0, then there is profile logging

Three environment variables can set the full path name for a log file:

	ROCSOLVER_LOG_TRACE_PATH sets the full path name for trace logging

	ROCSOLVER_LOG_BENCH_PATH sets the full path name for bench logging

	ROCSOLVER_LOG_PROFILE_PATH sets the full path name for profile logging

If one of these environment variables is not set, then ROCSOLVER_LOG_PATH sets the full path
for the corresponding logging, if it is set. If neither the above nor ROCSOLVER_LOG_PATH are
set, then the corresponding logging output is streamed to standard error.

The results of profile logging, if enabled, can be printed using rocsolver_log_write_profile
or rocsolver_log_flush_profile. Once logging facilities are no longer required (e.g. at
program termination), the user must call rocsolver_log_end to free the data structures used
for logging. If the profile log has not been flushed beforehand, then rocsolver_log_end
will also output the results of profile logging.

For more details on the mentioned logging functions, see the Logging functions section
on the rocSOLVER API document.

1.5.3. Example code

Code examples that illustrate the use of rocSOLVER’s multi-level logging facilities can be found
in this section or in the example_logging.cpp file in the clients/samples directory.

The following example shows some basic use: enabling trace and profile logging, and setting the
max depth for their output.

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);
rocsolver_log_begin();

// begin trace logging and profile logging (max depth = 5)
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_trace | rocblas_layer_mode_log_profile);
rocsolver_log_set_max_levels(5);

// call rocSOLVER functions...

// terminate logging and print profile results
rocsolver_log_flush_profile();
rocsolver_log_end();
rocblas_destroy_handle(handle);

Alternatively, users may control which logging modes are enabled by using environment variables.
The benefit of this approach is that the program does not need to be recompiled if a different
logging environment is desired. This requires that rocsolver_log_set_layer_mode and
rocsolver_log_set_max_levels are not called in the code, e.g.

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);
rocsolver_log_begin();

// call rocSOLVER functions...

// termination
rocsolver_log_end();
rocblas_destroy_handle(handle);

The user may then set the desired logging modes and max depth on the command line as follows:

export ROCSOLVER_LAYER=5
export ROCSOLVER_LEVELS=5

1.5.4. Kernel logging

Kernel launches from within rocSOLVER can be added to the trace and profile logs using an
additional layer mode flag. The flag rocblas_layer_mode_ex_log_kernel can be combined with
rocblas_layer_mode flags and passed to rocsolver_log_set_layer_mode in order to enable
kernel logging. Alternatively, the environment variable ROCSOLVER_LAYER can be set such that
(ROCSOLVER_LAYER & 16) != 0:

	If (ROCSOLVER_LAYER & 17) != 0, then kernel calls will be added to the trace log

	If (ROCSOLVER_LAYER & 20) != 0, then kernel calls will be added to the profile log

1.5.5. Multiple host threads

The logging facilities for rocSOLVER assume that each rocblas_handle is associated with at
most one host thread. When using rocSOLVER’s multi-level logging setup, it is recommended to
create a separate rocblas_handle for each host thread.

The rocsolver_log_* functions are not thread-safe. Calling a log function while any rocSOLVER
routine is executing on another host thread will result in undefined behaviour. Once enabled,
logging data collection is thread-safe. However, note that trace logging will likely result in
garbled trace trees if rocSOLVER routines are called from multiple host threads.

1.6. Clients

rocSOLVER has an infrastructure for testing and benchmarking similar to that of
rocBLAS [https://rocblas.readthedocs.io/en/latest/clients.html], as well as sample code illustrating
basic use of the library.

Client binaries are not built by default; they require specific flags to be passed to the install script
or CMake system. If the -c flag is passed to install.sh, the client binaries will be located in the
directory <rocsolverDIR>/build/release/clients/staging. If both the -c and -g flags are passed to
install.sh, the client binaries will be located in <rocsolverDIR>/build/debug/clients/staging.
If the -DBUILD_CLIENTS_TESTS=ON flag, the -DBUILD_CLIENTS_BENCHMARKS=ON flag, and/or the
-DBUILD_CLIENTS_SAMPLES=ON flag are passed to the CMake system, the relevant client binaries will normally
be located in the directory <rocsolverDIR>/build/clients/staging. See the Building and installation
section of the User Guide for more information on building the library and its clients.

Table of contents

	Testing rocSOLVER

	Benchmarking rocSOLVER

	rocSOLVER sample code

1.6.1. Testing rocSOLVER

The rocsolver-test client executes a suite of Google tests [https://github.com/google/googletest] (gtest) that
verifies the correct functioning of the library. The results computed by rocSOLVER, given random input data,
are normally compared with the results computed by NETLib LAPACK [https://www.netlib.org/lapack/] on the CPU, or tested implicitly
in the context of the solved problem. It will be built if the -c flag is passed to install.sh or if the -DBUILD_CLIENTS_TESTS=ON flag is
passed to the CMake system.

Calling the rocSOLVER gtest client with the --help flag

./rocsolver-test --help

returns information on different flags that control the behavior of the gtests.

One of the most useful flags is the --gtest_filter flag, which allows the user to choose which tests to run
from the suite. For example, the following command will run the tests for only geqrf:

./rocsolver-test --gtest_filter=*GEQRF*

Note that rocSOLVER’s tests are divided into two separate groupings: checkin_lapack and daily_lapack.
Tests in the checkin_lapack group are small and quick to execute, and verify basic correctness and error
handling. Tests in the daily_lapack group are large and slower to execute, and verify correctness of
large problem sizes. Users may run one test group or the other using --gtest_filter, e.g.

./rocsolver-test --gtest_filter=*checkin_lapack*
./rocsolver-test --gtest_filter=*daily_lapack*

1.6.2. Benchmarking rocSOLVER

The rocsolver-bench client runs any rocSOLVER function with random data of the specified dimensions. It compares basic
performance information (i.e. execution times) between NETLib LAPACK [https://www.netlib.org/lapack/] on the
CPU and rocSOLVER on the GPU. It will be built if the -c flag is passed to install.sh or if the
-DBUILD_CLIENTS_BENCHMARKS=ON flag is passed to the CMake system.

Calling the rocSOLVER bench client with the --help flag

./rocsolver-bench --help

returns information on the different parameters and flags that control the behavior of the benchmark client.

Two of the most important flags for rocsolver-bench are the -f and -r flags. The -f (or
--function) flag allows the user to select which function to benchmark. The -r (or --precision)
flag allows the user to select the data precision for the function, and can be one of s (single precision),
d (double precision), c (single precision complex), or z (double precision complex).

The non-pointer arguments for a function can be passed to rocsolver-bench by using the argument name as
a flag (see the rocSOLVER API document for information on the function arguments and
their names). For example, the function rocsolver_dgeqrf_strided_batched has the following method signature:

rocblas_status
rocsolver_dgeqrf_strided_batched(rocblas_handle handle,
 const rocblas_int m,
 const rocblas_int n,
 double* A,
 const rocblas_int lda,
 const rocblas_stride strideA,
 double* ipiv,
 const rocblas_stride strideP,
 const rocblas_int batch_count);

A call to rocsolver-bench that runs this function on a batch of one hundred 30x30 matrices could look like this:

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 -n 30 --lda 30 --strideA 900 --strideP 30 --batch_count 100

Generally, rocsolver-bench will attempt to provide or calculate a suitable default value for these arguments,
though at least one size argument must always be specified by the user. Functions that take m and n as arguments
typically require m to be provided, and a square matrix will be assumed. For example, the previous command is
equivalent to:

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100

Other useful benchmarking options include the --perf flag, which will disable the LAPACK computation and only time and print the rocSOLVER performance result; the -i (or --iters) flag, which indicates the number of times to run the
GPU timing loop (the performance result would be the average of all the runs); and the --profile
flag, which enables profile logging indicating the maximum depth of the nested output.

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --perf 1
./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --iters 20
./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --profile 5

In addition to the benchmarking functionality, the rocSOLVER bench client can also provide the norm of the error in the
computations when the -v (or --verify) flag is used; and return the amount of device memory required as workspace for the given function, if the
--mem_query flag is passed.

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --verify 1
./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --mem_query 1

1.6.3. rocSOLVER sample code

rocSOLVER’s sample programs provide illustrative examples of how to work with the rocSOLVER library. They will be
built if the -c flag is passed to install.sh or if the -DBUILD_CLIENTS_SAMPLES=ON flag is passed to the
CMake system.

Currently, sample code exists to demonstrate the following:

	Basic use of rocSOLVER in C, C++, and Fortran, using the example of rocsolver_geqrf;

	Use of batched and strided_batched functions, using rocsolver_geqrf_batched and rocsolver_geqrf_strided_batched as examples;

	Use of rocSOLVER with the Heterogeneous Memory Management (HMM) model; and

	Use of rocSOLVER’s multi-level logging functionality.

2. rocSOLVER Library Design Guide

	2.1. Introduction

	2.2. Batched rocSOLVER

	2.3. Tuning rocSOLVER Performance
	2.3.1. geqr2/geqrf and geql2/geqlf functions
	GEQxF_BLOCKSIZE

	GEQxF_GEQx2_SWITCHSIZE

	2.3.2. gerq2/gerqf and gelq2/gelqf functions
	GExQF_BLOCKSIZE

	GExQF_GExQ2_SWITCHSIZE

	2.3.3. org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions
	xxGQx_BLOCKSIZE

	xxGQx_xxGQx2_SWITCHSIZE

	2.3.4. orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions
	xxGxQ_BLOCKSIZE

	xxGxQ_xxGxQ2_SWITCHSIZE

	2.3.5. orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions
	xxMQx_BLOCKSIZE

	2.3.6. ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions
	xxMxQ_BLOCKSIZE

	2.3.7. gebd2/gebrd and labrd functions
	GEBRD_BLOCKSIZE

	GEBRD_GEBD2_SWITCHSIZE

	2.3.8. gesvd function
	THIN_SVD_SWITCH

	2.3.9. sytd2/sytrd, hetd2/hetrd and latrd functions
	xxTRD_BLOCKSIZE

	xxTRD_xxTD2_SWITCHSIZE

	2.3.10. sygs2/sygst and hegs2/hegst functions
	xxGST_BLOCKSIZE

	2.3.11. syevd, heevd and stedc functions
	STEDC_MIN_DC_SIZE

	2.3.12. potf2/potrf functions
	POTRF_BLOCKSIZE

	POTRF_POTF2_SWITCHSIZE

	2.3.13. sytf2/sytrf and lasyf functions
	SYTRF_BLOCKSIZE

	SYTRF_SYTF2_SWITCHSIZE

	2.3.14. getf2/getrf functions
	GETF2_MAX_COLS

	GETF2_MAX_THDS

	GETF2_OPTIM_NGRP

	GETRF_NUM_INTERVALS

	GETRF_INTERVALS

	GETRF_BLKSIZES

	GETRF_BATCH_NUM_INTERVALS

	GETRF_BATCH_INTERVALS

	GETRF_BATCH_BLKSIZES

	GETRF_NPVT_NUM_INTERVALS

	GETRF_NPVT_INTERVALS

	GETRF_NPVT_BLKSIZES

	GETRF_NPVT_BATCH_NUM_INTERVALS

	GETRF_NPVT_BATCH_INTERVALS

	GETRF_NPVT_BATCH_BLKSIZES

	2.3.15. getri function
	GETRI_MAX_COLS

	GETRI_TINY_SIZE

	GETRI_NUM_INTERVALS

	GETRI_INTERVALS

	GETRI_BLKSIZES

	GETRI_BATCH_TINY_SIZE

	GETRI_BATCH_NUM_INTERVALS

	GETRI_BATCH_INTERVALS

	GETRI_BATCH_BLKSIZES

	2.3.16. trtri function
	TRTRI_MAX_COLS

	TRTRI_NUM_INTERVALS

	TRTRI_INTERVALS

	TRTRI_BLKSIZES

	TRTRI_BATCH_NUM_INTERVALS

	TRTRI_BATCH_INTERVALS

	TRTRI_BATCH_BLKSIZES

	2.4. Contributing Guidelines

2.1. Introduction

More to come later…

2.2. Batched rocSOLVER

More to come later…

2.3. Tuning rocSOLVER Performance

Some compile-time parameters in rocSOLVER can be modified to tune the performance
of the library functions in a given context (e.g., for a particular matrix size or shape).
A description of these tunable constants is presented in this section.

To facilitate the description, the constants are grouped by the family of functions they affect.
Some aspects of the involved algorithms are also depicted here for the sake of clarity; however,
this section is not intended to be a review of the well-known methods for different matrix computations.
These constants are specific to the rocSOLVER implementation and are only described within that context.

All described constants can be found in library/src/include/ideal_sizes.hpp.
These are not run-time arguments for the associated API functions. The library must be
rebuilt from source for any change to take effect.

Warning

The effect of changing a tunable constant on the performance of the library is difficult
to predict, and such analysis is beyond the scope of this document. Advanced users and
developers tuning these values should proceed with caution. New values may (or may not)
improve or worsen the performance of the associated functions.

Table of contents

	geqr2/geqrf and geql2/geqlf functions

	GEQxF_BLOCKSIZE

	GEQxF_GEQx2_SWITCHSIZE

	gerq2/gerqf and gelq2/gelqf functions

	GExQF_BLOCKSIZE

	GExQF_GExQ2_SWITCHSIZE

	org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions

	xxGQx_BLOCKSIZE

	xxGQx_xxGQx2_SWITCHSIZE

	orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions

	xxGxQ_BLOCKSIZE

	xxGxQ_xxGxQ2_SWITCHSIZE

	orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions

	xxMQx_BLOCKSIZE

	ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions

	xxMxQ_BLOCKSIZE

	gebd2/gebrd and labrd functions

	GEBRD_BLOCKSIZE

	GEBRD_GEBD2_SWITCHSIZE

	gesvd function

	THIN_SVD_SWITCH

	sytd2/sytrd, hetd2/hetrd and latrd functions

	xxTRD_BLOCKSIZE

	xxTRD_xxTD2_SWITCHSIZE

	sygs2/sygst and hegs2/hegst functions

	xxGST_BLOCKSIZE

	syevd, heevd and stedc functions

	STEDC_MIN_DC_SIZE

	potf2/potrf functions

	POTRF_BLOCKSIZE

	POTRF_POTF2_SWITCHSIZE

	sytf2/sytrf and lasyf functions

	SYTRF_BLOCKSIZE

	SYTRF_SYTF2_SWITCHSIZE

	getf2/getrf functions

	GETF2_MAX_COLS

	GETF2_MAX_THDS

	GETF2_OPTIM_NGRP

	GETRF_NUM_INTERVALS

	GETRF_INTERVALS

	GETRF_BLKSIZES

	GETRF_BATCH_NUM_INTERVALS

	GETRF_BATCH_INTERVALS

	GETRF_BATCH_BLKSIZES

	GETRF_NPVT_NUM_INTERVALS

	GETRF_NPVT_INTERVALS

	GETRF_NPVT_BLKSIZES

	GETRF_NPVT_BATCH_NUM_INTERVALS

	GETRF_NPVT_BATCH_INTERVALS

	GETRF_NPVT_BATCH_BLKSIZES

	getri function

	GETRI_MAX_COLS

	GETRI_TINY_SIZE

	GETRI_NUM_INTERVALS

	GETRI_INTERVALS

	GETRI_BLKSIZES

	GETRI_BATCH_TINY_SIZE

	GETRI_BATCH_NUM_INTERVALS

	GETRI_BATCH_INTERVALS

	GETRI_BATCH_BLKSIZES

	trtri function

	TRTRI_MAX_COLS

	TRTRI_NUM_INTERVALS

	TRTRI_INTERVALS

	TRTRI_BLKSIZES

	TRTRI_BATCH_NUM_INTERVALS

	TRTRI_BATCH_INTERVALS

	TRTRI_BATCH_BLKSIZES

2.3.1. geqr2/geqrf and geql2/geqlf functions

The orthogonal factorizations from the left (QR or QL factorizations) are separated into two versions:
blocked and unblocked. The unblocked routines GEQR2 and GEQL2 are based on BLAS Level 2 operations and work by applying
Householder reflectors one column at a time. The blocked routines GEQRF and GEQLF factorize a block of columns at each
step using the unblocked functions (provided the matrix is large enough) and apply the resulting block reflectors to update
the rest of the matrix. The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

GEQxF_BLOCKSIZE

	
GEQxF_BLOCKSIZE

	Determines the size of the block column factorized at each step in the blocked QR or QL algorithm (GEQRF or GEQLF). It also applies to the corresponding batched and strided-batched routines.

GEQxF_GEQx2_SWITCHSIZE

	
GEQxF_GEQx2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing GEQRF or GEQLF. It also applies to the corresponding batched and strided-batched routines.

GEQRF or GEQLF will factorize blocks of GEQxF_BLOCKSIZE columns at a time until the rest of the matrix has no more than GEQxF_GEQx2_SWITCHSIZE rows or columns; at this point the last block, if any, will be factorized with the unblocked algorithm (GEQR2 or GEQL2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.2. gerq2/gerqf and gelq2/gelqf functions

The orthogonal factorizations from the right (RQ or LQ factorizations) are separated into two versions:
blocked and unblocked. The unblocked routines GERQ2 and GELQ2 are based on BLAS Level 2 operations and work by applying
Householder reflectors one row at a time. The blocked routines GERQF and GELQF factorize a block of rows at each
step using the unblocked functions (provided the matrix is large enough) and apply the resulting block reflectors to update
the rest of the matrix. The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

GExQF_BLOCKSIZE

	
GExQF_BLOCKSIZE

	Determines the size of the block row factorized at each step in the blocked RQ or LQ algorithm (GERQF or GELQF). It also applies to the corresponding batched and strided-batched routines.

GExQF_GExQ2_SWITCHSIZE

	
GExQF_GExQ2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing GERQF or GELQF. It also applies to the corresponding batched and strided-batched routines.

GERQF or GELQF will factorize blocks of GExQF_BLOCKSIZE rows at a time until the rest of the matrix has no more than GExQF_GExQ2_SWITCHSIZE rows or columns; at this point the last block, if any, will be factorized with the unblocked algorithm (GERQ2 or GELQ2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.3. org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions

The generators of a matrix Q with orthonormal columns (as products of Householder reflectors derived
from the QR or QL factorizations) are also separated into blocked and unblocked versions. The unblocked
routines ORG2R/UNG2R and ORG2L/UNG2L, based on BLAS Level 2 operations, work by accumulating one Householder reflector at a time.
The blocked routines ORGQR/UNGQR and ORGQL/UNGQL multiply a set of reflectors at each step using the unblocked
functions (provided there are enough reflectors to accumulate) and apply the resulting block reflector to update Q.
The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

xxGQx_BLOCKSIZE

	
xxGQx_BLOCKSIZE

	Determines the size of the block reflector that is applied at each step when generating a matrix Q with orthonormal columns with the blocked algorithm (ORGQR/UNGQR or ORGQL/UNGQL).

xxGQx_xxGQx2_SWITCHSIZE

	
xxGQx_xxGQx2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing ORGQR/UNGQR or ORGQL/UNGQL.

ORGQR/UNGQR or ORGQL/UNGQL will accumulate xxGQx_BLOCKSIZE reflectors at a time until there are no more than xxGQx_xxGQx2_SWITCHSIZE reflectors left; the remaining reflectors, if any, are applied one by one using the unblocked algorithm (ORG2R/UNG2R or ORG2L/UNG2L).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.4. orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions

The generators of a matrix Q with orthonormal rows (as products of Householder reflectors derived
from the RQ or LQ factorizations) are also separated into blocked and unblocked versions. The unblocked
routines ORGR2/UNGR2 and ORGL2/UNGL2, based on BLAS Level 2 operations, work by accumulating one Householder reflector at a time.
The blocked routines ORGRQ/UNGRQ and ORGLQ/UNGLQ multiply a set of reflectors at each step using the unblocked
functions (provided there are enough reflectors to accumulate) and apply the resulting block reflector to update Q.
The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

xxGxQ_BLOCKSIZE

	
xxGxQ_BLOCKSIZE

	Determines the size of the block reflector that is applied at each step when generating a matrix Q with orthonormal rows with the blocked algorithm (ORGRQ/UNGRQ or ORGLQ/UNGLQ).

xxGxQ_xxGxQ2_SWITCHSIZE

	
xxGxQ_xxGxQ2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing ORGRQ/UNGRQ or ORGLQ/UNGLQ.

ORGRQ/UNGRQ or ORGLQ/UNGLQ will accumulate xxGxQ_BLOCKSIZE reflectors at a time until there are no more than xxGxQ_xxGxQ2_SWITCHSIZE reflectors left; the remaining reflectors, if any, are applied one by one using the unblocked algorithm (ORGR2/UNGR2 or ORGL2/UNGL2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.5. orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions

As with the generators of orthonormal/unitary matrices, the routines to multiply a general
matrix C by a matrix Q with orthonormal columns are separated into blocked and unblocked versions.
The unblocked routines ORM2R/UNM2R and ORM2L/UNM2L, based on BLAS Level 2 operations, work by multiplying one Householder
reflector at a time, while the blocked routines ORMQR/UNMQR and ORMQL/UNMQL apply a set of reflectors at each step
(provided there are enough reflectors to start with).
The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

xxMQx_BLOCKSIZE

	
xxMQx_BLOCKSIZE

	Determines the size of the block reflector that multiplies the matrix C at each step with the blocked algorithm (ORMQR/UNMQR or ORMQL/UNMQL).

xxMQx_BLOCKSIZE also acts as a switch size; if the total number of reflectors is not greater than xxMQx_BLOCKSIZE (k <= xxMQx_BLOCKSIZE), ORMQR/UNMQR or ORMQL/UNMQL will directly call the unblocked routines (ORM2R/UNM2R or ORM2L/UNM2L). However, when k is not a multiple of xxMQx_BLOCKSIZE, the last block that updates C in the blocked process is allowed to be smaller than xxMQx_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.6. ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions

As with the generators of orthonormal/unitary matrices, the routines to multiply a general
matrix C by a matrix Q with orthonormal rows are separated into blocked and unblocked versions.
The unblocked routines ORMR2/UNMR2 and ORML2/UNML2, based on BLAS Level 2 operations, work by multiplying one Householder
reflector at a time, while the blocked routines ORMRQ/UNMRQ and ORMLQ/UNMLQ apply a set of reflectors at each step
(provided there are enough reflectors to start with).
The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

xxMxQ_BLOCKSIZE

	
xxMxQ_BLOCKSIZE

	Determines the size of the block reflector that multiplies the matrix C at each step with the blocked algorithm (ORMRQ/UNMRQ or ORMLQ/UNMLQ).

xxMxQ_BLOCKSIZE also acts as a switch size; if the total number of reflectors is not greater than xxMxQ_BLOCKSIZE (k <= xxMxQ_BLOCKSIZE), ORMRQ/UNMRQ or ORMLQ/UNMLQ will directly call the unblocked routines (ORMR2/UNMR2 or ORML2/UNML2). However, when k is not a multiple of xxMxQ_BLOCKSIZE, the last block that updates C in the blocked process is allowed to be smaller than xxMxQ_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.7. gebd2/gebrd and labrd functions

The computation of the bidiagonal form of a matrix is separated into blocked and
unblocked versions. The unblocked routine GEBD2 (and the auxiliary LABRD), based on BLAS Level 2 operations,
apply Householder reflections to one column and row at a time. The blocked routine GEBRD reduces a leading block of rows and
columns at each step using the unblocked function LABRD (provided the matrix is large enough), and applies the resulting block reflectors to
update the trailing submatrix. The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

GEBRD_BLOCKSIZE

	
GEBRD_BLOCKSIZE

	Determines the size of the leading block that is reduced to bidiagonal form at each step when using the blocked algorithm (GEBRD). It also applies to the corresponding batched and strided-batched routines.

GEBRD_GEBD2_SWITCHSIZE

	
GEBRD_GEBD2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing GEBRD. It also applies to the corresponding batched and strided-batched routines.

GEBRD will use LABRD to reduce blocks of GEBRD_BLOCKSIZE rows and columns at a time until the trailing submatrix has no more than GEBRD_GEBD2_SWITCHSIZE rows or columns; at this point the last block, if any, will be reduced with the unblocked algorithm (GEBD2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.8. gesvd function

The Singular Value Decomposition of a matrix A could be sped up for matrices with sufficiently many more rows than
columns (or columns than rows) by starting with a QR factorization (or LQ factorization) of A and working with the
triangular factor afterwards.

THIN_SVD_SWITCH

	
THIN_SVD_SWITCH

	Determines the factor by which one dimension of a matrix should exceed the other dimension for the thin SVD to be computed when executing GESVD. It also applies to the corresponding batched and strided-batched routines.

When a m-by-n matrix A is passed to GESVD, if m >= THIN_SVD_SWITCH*n or n >= THIN_SVD_SWITCH*m, then the thin SVD is computed.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.9. sytd2/sytrd, hetd2/hetrd and latrd functions

The computation of the tridiagonal form of a symmetric/Hermitian matrix is separated into blocked and
unblocked versions. The unblocked routines SYTD2/HETD2 (and the auxiliary LATRD), based on BLAS Level 2 operations,
apply Householder reflections to one column/row at a time. The blocked routine SYTRD reduces a block of rows and columns at
each step using the unblocked function LATRD (provided the matrix is large enough) and applies the resulting block reflector to
update the rest of the matrix. The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which,
in general, can give better performance on the GPU.

xxTRD_BLOCKSIZE

	
xxTRD_BLOCKSIZE

	Determines the size of the leading block that is reduced to tridiagonal form at each step when using the blocked algorithm (SYTRD/HETRD). It also applies to the corresponding batched and strided-batched routines.

xxTRD_xxTD2_SWITCHSIZE

	
xxTRD_xxTD2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing SYTRD/HETRD. It also applies to the corresponding batched and strided-batched routines.

SYTRD/HETRD will use LATRD to reduce blocks of xxTRD_BLOCKSIZE rows and columns at a time until the rest of the matrix has no more than xxTRD_xxTD2_SWITCHSIZE rows or columns; at this point the last block, if any, will be reduced with the unblocked algorithm (SYTD2/HETD2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.10. sygs2/sygst and hegs2/hegst functions

The reduction of a symmetric/Hermitian-definite generalized eigenproblem to standard form is separated into
blocked and unblocked versions. The unblocked routines SYGS2/HEGS2 reduce the matrix A
one column/row at a time with vector operations and rank-2 updates (BLAS Level 2). The blocked
routines SYGST/HEGST reduce a leading block of A at each step using the unblocked methods (provided A is large enough)
and update the trailing matrix with BLAS Level 3 operations (matrix products
and rank-2k updates), which, in general, can give better performance on the GPU.

xxGST_BLOCKSIZE

	
xxGST_BLOCKSIZE

	Determines the size of the leading block that is reduced to standard form at each step when using the blocked algorithm (SYGST/HEGST). It also applies to the corresponding batched and strided-batched routines.

xxGST_BLOCKSIZE also acts as a switch size; if the original size of the problem is not larger than xxGST_BLOCKSIZE (n <= xxGST_BLOCKSIZE), SYGST/HEGST will directly call the unblocked routines (SYGS2/HEGS2). However, when n is not a multiple of xxGST_BLOCKSIZE, the last block reduced in the blocked process is allowed to be smaller than xxGST_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.11. syevd, heevd and stedc functions

When running SYEVD/HEEVD (or the corresponding batched and strided-batched routines),
the computation of the eigenvectors of the associated tridiagonal matrix
can be sped up using a divide-and-conquer
approach (implemented in STEDC), provided the size of the independent block is large enough.

STEDC_MIN_DC_SIZE

	
STEDC_MIN_DC_SIZE

	Determines the minimum size required for the eigenvectors of an independent block of a tridiagonal matrix to be computed using the divide-and-conquer algorithm (STEDC).

If the size of the block is not greater than STEDC_MIN_DC_SIZE (bs <= STEDC_MIN_DC_SIZE), the eigenvectors are computed with the normal QR algorithm.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.12. potf2/potrf functions

The Cholesky factorization is separated into blocked (right-looking) and unblocked versions. The unblocked
routine POTF2, based on BLAS Level 2 operations, computes one diagonal element at a time
and scales the corresponding row/column. The blocked routine POTRF factorizes a leading block of rows/columns
at each step using the unblocked algorithm (provided the matrix is large enough) and updates the trailing matrix with BLAS Level 3
operations (symmetric rank-k updates), which, in general, can give better performance on the GPU.

POTRF_BLOCKSIZE

	
POTRF_BLOCKSIZE

	Determines the size of the leading block that is factorized at each step when using the blocked algorithm (POTRF). It also applies to the corresponding batched and strided-batched routines.

POTRF_POTF2_SWITCHSIZE

	
POTRF_POTF2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing POTRF. It also applies to the corresponding batched and strided-batched routines.

POTRF will factorize blocks of POTRF_BLOCKSIZE columns at a time until the rest of the matrix has no more than POTRF_POTF2_SWITCHSIZE columns; at this point the last block, if any, will be factorized with the unblocked algorithm (POTF2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.13. sytf2/sytrf and lasyf functions

The Bunch-Kaufman factorization is separated into blocked and unblocked versions. The unblocked routine SYTF2
generates one 1-by-1 or 2-by-2 diagonal block at a time and applies a rank-1 update. The blocked routine SYTRF executes
a partial factorization of a given maximum number of diagonal elements (LASYF) at each step (provided the matrix is large enough),
and updates the rest of the matrix with matrix-matrix operations (BLAS Level 3), which, in general, can give better performance on the GPU.

SYTRF_BLOCKSIZE

	
SYTRF_BLOCKSIZE

	Determines the maximum size of the partial factorization executed at each step when using the blocked algorithm (SYTRF). It also applies to the corresponding batched and strided-batched routines.

SYTRF_SYTF2_SWITCHSIZE

	
SYTRF_SYTF2_SWITCHSIZE

	Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing SYTRF. It also applies to the corresponding batched and strided-batched routines.

SYTRF will use LASYF to factorize a submatrix of at most SYTRF_BLOCKSIZE columns at a time until the rest of the matrix has no more than SYTRF_SYTF2_SWITCHSIZE columns; at this point the last block, if any, will be factorized with the unblocked algorithm (SYTF2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.14. getf2/getrf functions

GETF2_MAX_COLS

GETF2_MAX_THDS

GETF2_OPTIM_NGRP

GETRF_NUM_INTERVALS

GETRF_INTERVALS

GETRF_BLKSIZES

GETRF_BATCH_NUM_INTERVALS

GETRF_BATCH_INTERVALS

GETRF_BATCH_BLKSIZES

GETRF_NPVT_NUM_INTERVALS

GETRF_NPVT_INTERVALS

GETRF_NPVT_BLKSIZES

GETRF_NPVT_BATCH_NUM_INTERVALS

GETRF_NPVT_BATCH_INTERVALS

GETRF_NPVT_BATCH_BLKSIZES

2.3.15. getri function

GETRI_MAX_COLS

GETRI_TINY_SIZE

GETRI_NUM_INTERVALS

GETRI_INTERVALS

GETRI_BLKSIZES

GETRI_BATCH_TINY_SIZE

GETRI_BATCH_NUM_INTERVALS

GETRI_BATCH_INTERVALS

GETRI_BATCH_BLKSIZES

2.3.16. trtri function

TRTRI_MAX_COLS

TRTRI_NUM_INTERVALS

TRTRI_INTERVALS

TRTRI_BLKSIZES

TRTRI_BATCH_NUM_INTERVALS

TRTRI_BATCH_INTERVALS

TRTRI_BATCH_BLKSIZES

2.4. Contributing Guidelines

More to come later…

3. rocSOLVER API

	3.1. Types
	3.1.1. Additional types
	rocblas_direct

	rocblas_storev

	rocblas_svect

	rocblas_evect

	rocblas_workmode

	rocblas_eform

	3.2. LAPACK Auxiliary Functions
	3.2.1. Vector and Matrix manipulations
	rocsolver_<type>lacgv()

	rocsolver_<type>laswp()

	3.2.2. Householder reflections
	rocsolver_<type>larfg()

	rocsolver_<type>larft()

	rocsolver_<type>larf()

	rocsolver_<type>larfb()

	3.2.3. Bidiagonal forms
	rocsolver_<type>labrd()

	rocsolver_<type>bdsqr()

	3.2.4. Tridiagonal forms
	rocsolver_<type>latrd()

	rocsolver_<type>sterf()

	rocsolver_<type>steqr()

	rocsolver_<type>stedc()

	3.2.5. Symmetric matrices
	rocsolver_<type>lasyf()

	3.2.6. Orthonormal matrices
	rocsolver_<type>org2r()

	rocsolver_<type>orgqr()

	rocsolver_<type>orgl2()

	rocsolver_<type>orglq()

	rocsolver_<type>org2l()

	rocsolver_<type>orgql()

	rocsolver_<type>orgbr()

	rocsolver_<type>orgtr()

	rocsolver_<type>orm2r()

	rocsolver_<type>ormqr()

	rocsolver_<type>orml2()

	rocsolver_<type>ormlq()

	rocsolver_<type>orm2l()

	rocsolver_<type>ormql()

	rocsolver_<type>ormbr()

	rocsolver_<type>ormtr()

	3.2.7. Unitary matrices
	rocsolver_<type>ung2r()

	rocsolver_<type>ungqr()

	rocsolver_<type>ungl2()

	rocsolver_<type>unglq()

	rocsolver_<type>ung2l()

	rocsolver_<type>ungql()

	rocsolver_<type>ungbr()

	rocsolver_<type>ungtr()

	rocsolver_<type>unm2r()

	rocsolver_<type>unmqr()

	rocsolver_<type>unml2()

	rocsolver_<type>unmlq()

	rocsolver_<type>unm2l()

	rocsolver_<type>unmql()

	rocsolver_<type>unmbr()

	rocsolver_<type>unmtr()

	3.3. LAPACK Functions
	3.3.1. Triangular factorizations
	rocsolver_<type>potf2()

	rocsolver_<type>potf2_batched()

	rocsolver_<type>potf2_strided_batched()

	rocsolver_<type>potrf()

	rocsolver_<type>potrf_batched()

	rocsolver_<type>potrf_strided_batched()

	rocsolver_<type>getf2()

	rocsolver_<type>getf2_batched()

	rocsolver_<type>getf2_strided_batched()

	rocsolver_<type>getrf()

	rocsolver_<type>getrf_batched()

	rocsolver_<type>getrf_strided_batched()

	rocsolver_<type>sytf2()

	rocsolver_<type>sytf2_batched()

	rocsolver_<type>sytf2_strided_batched()

	rocsolver_<type>sytrf()

	rocsolver_<type>sytrf_batched()

	rocsolver_<type>sytrf_strided_batched()

	3.3.2. Orthogonal factorizations
	rocsolver_<type>geqr2()

	rocsolver_<type>geqr2_batched()

	rocsolver_<type>geqr2_strided_batched()

	rocsolver_<type>geqrf()

	rocsolver_<type>geqrf_batched()

	rocsolver_<type>geqrf_strided_batched()

	rocsolver_<type>gerq2()

	rocsolver_<type>gerq2_batched()

	rocsolver_<type>gerq2_strided_batched()

	rocsolver_<type>gerqf()

	rocsolver_<type>gerqf_batched()

	rocsolver_<type>gerqf_strided_batched()

	rocsolver_<type>geql2()

	rocsolver_<type>geql2_batched()

	rocsolver_<type>geql2_strided_batched()

	rocsolver_<type>geqlf()

	rocsolver_<type>geqlf_batched()

	rocsolver_<type>geqlf_strided_batched()

	rocsolver_<type>gelq2()

	rocsolver_<type>gelq2_batched()

	rocsolver_<type>gelq2_strided_batched()

	rocsolver_<type>gelqf()

	rocsolver_<type>gelqf_batched()

	rocsolver_<type>gelqf_strided_batched()

	3.3.3. Problem and matrix reductions
	rocsolver_<type>gebd2()

	rocsolver_<type>gebd2_batched()

	rocsolver_<type>gebd2_strided_batched()

	rocsolver_<type>gebrd()

	rocsolver_<type>gebrd_batched()

	rocsolver_<type>gebrd_strided_batched()

	rocsolver_<type>sytd2()

	rocsolver_<type>sytd2_batched()

	rocsolver_<type>sytd2_strided_batched()

	rocsolver_<type>hetd2()

	rocsolver_<type>hetd2_batched()

	rocsolver_<type>hetd2_strided_batched()

	rocsolver_<type>sytrd()

	rocsolver_<type>sytrd_batched()

	rocsolver_<type>sytrd_strided_batched()

	rocsolver_<type>hetrd()

	rocsolver_<type>hetrd_batched()

	rocsolver_<type>hetrd_strided_batched()

	rocsolver_<type>sygs2()

	rocsolver_<type>sygs2_batched()

	rocsolver_<type>sygs2_strided_batched()

	rocsolver_<type>hegs2()

	rocsolver_<type>hegs2_batched()

	rocsolver_<type>hegs2_strided_batched()

	rocsolver_<type>sygst()

	rocsolver_<type>sygst_batched()

	rocsolver_<type>sygst_strided_batched()

	rocsolver_<type>hegst()

	rocsolver_<type>hegst_batched()

	rocsolver_<type>hegst_strided_batched()

	3.3.4. Linear-systems solvers
	rocsolver_<type>trtri()

	rocsolver_<type>trtri_batched()

	rocsolver_<type>trtri_strided_batched()

	rocsolver_<type>getri()

	rocsolver_<type>getri_batched()

	rocsolver_<type>getri_strided_batched()

	rocsolver_<type>getrs()

	rocsolver_<type>getrs_batched()

	rocsolver_<type>getrs_strided_batched()

	rocsolver_<type>gesv()

	rocsolver_<type>gesv_batched()

	rocsolver_<type>gesv_strided_batched()

	rocsolver_<type>potri()

	rocsolver_<type>potri_batched()

	rocsolver_<type>potri_strided_batched()

	rocsolver_<type>potrs()

	rocsolver_<type>potrs_batched()

	rocsolver_<type>potrs_strided_batched()

	rocsolver_<type>posv()

	rocsolver_<type>posv_batched()

	rocsolver_<type>posv_strided_batched()

	3.3.5. Least-squares solvers
	rocsolver_<type>gels()

	rocsolver_<type>gels_batched()

	rocsolver_<type>gels_strided_batched()

	3.3.6. Symmetric eigensolvers
	rocsolver_<type>syev()

	rocsolver_<type>syev_batched()

	rocsolver_<type>syev_strided_batched()

	rocsolver_<type>heev()

	rocsolver_<type>heev_batched()

	rocsolver_<type>heev_strided_batched()

	rocsolver_<type>syevd()

	rocsolver_<type>syevd_batched()

	rocsolver_<type>syevd_strided_batched()

	rocsolver_<type>heevd()

	rocsolver_<type>heevd_batched()

	rocsolver_<type>heevd_strided_batched()

	rocsolver_<type>sygv()

	rocsolver_<type>sygv_batched()

	rocsolver_<type>sygv_strided_batched()

	rocsolver_<type>hegv()

	rocsolver_<type>hegv_batched()

	rocsolver_<type>hegv_strided_batched()

	rocsolver_<type>sygvd()

	rocsolver_<type>sygvd_batched()

	rocsolver_<type>sygvd_strided_batched()

	rocsolver_<type>hegvd()

	rocsolver_<type>hegvd_batched()

	rocsolver_<type>hegvd_strided_batched()

	3.3.7. Singular value decomposition
	rocsolver_<type>gesvd()

	rocsolver_<type>gesvd_batched()

	rocsolver_<type>gesvd_strided_batched()

	3.4. Lapack-like Functions
	3.4.1. Triangular factorizations
	rocsolver_<type>getf2_npvt()

	rocsolver_<type>getf2_npvt_batched()

	rocsolver_<type>getf2_npvt_strided_batched()

	rocsolver_<type>getrf_npvt()

	rocsolver_<type>getrf_npvt_batched()

	rocsolver_<type>getrf_npvt_strided_batched()

	3.4.2. Linear-systems solvers
	rocsolver_<type>getri_npvt()

	rocsolver_<type>getri_npvt_batched()

	rocsolver_<type>getri_npvt_strided_batched()

	rocsolver_<type>getri_outofplace()

	rocsolver_<type>getri_outofplace_batched()

	rocsolver_<type>getri_outofplace_strided_batched()

	rocsolver_<type>getri_npvt_outofplace()

	rocsolver_<type>getri_npvt_outofplace_batched()

	rocsolver_<type>getri_npvt_outofplace_strided_batched()

	3.5. Logging Functions and Library Information
	3.5.1. Logging functions
	rocsolver_log_begin()

	rocsolver_log_end()

	rocsolver_log_set_layer_mode()

	rocsolver_log_set_max_levels()

	rocsolver_log_restore_defaults()

	rocsolver_log_write_profile()

	rocsolver_log_flush_profile()

	3.5.2. Library information
	rocsolver_get_version_string()

	rocsolver_get_version_string_size()

	3.6. Deprecated
	3.6.1. Types
	rocsolver_int

	rocsolver_handle

	rocsolver_direction

	rocsolver_storev

	rocsolver_operation

	rocsolver_fill

	rocsolver_diagonal

	rocsolver_side

	rocsolver_status

	3.6.2. Auxiliary functions
	rocsolver_create_handle()

	rocsolver_destroy_handle()

	rocsolver_set_stream()

	rocsolver_get_stream()

	rocsolver_set_vector()

	rocsolver_get_vector()

	rocsolver_set_matrix()

	rocsolver_get_matrix()

3.1. Types

rocSOLVER uses types and enumerations defined by the rocBLAS API. For more information, see the
rocBLAS types [https://rocblas.readthedocs.io/en/latest/functions.html#rocblas-types] documentation.
Next we present additional types, only used in rocSOLVER, that extend the rocBLAS API.

3.1.1. Additional types

List of additional types

	rocblas_direct

	rocblas_storev

	rocblas_svect

	rocblas_evect

	rocblas_workmode

	rocblas_eform

rocblas_direct

	
enum rocblas_direct

	Used to specify the order in which multiple Householder matrices are applied together.

Values:

	
enumerator rocblas_forward_direction

	Householder matrices applied from the right.

	
enumerator rocblas_backward_direction

	Householder matrices applied from the left.

rocblas_storev

	
enum rocblas_storev

	Used to specify how householder vectors are stored in a matrix of vectors.

Values:

	
enumerator rocblas_column_wise

	Householder vectors are stored in the columns of a matrix.

	
enumerator rocblas_row_wise

	Householder vectors are stored in the rows of a matrix.

rocblas_svect

	
enum rocblas_svect

	Used to specify how the singular vectors are to be computed and stored.

Values:

	
enumerator rocblas_svect_all

	The entire associated orthogonal/unitary matrix is computed.

	
enumerator rocblas_svect_singular

	Only the singular vectors are computed and stored in output array.

	
enumerator rocblas_svect_overwrite

	Only the singular vectors are computed and overwrite the input matrix.

	
enumerator rocblas_svect_none

	No singular vectors are computed.

rocblas_evect

	
enum rocblas_evect

	Used to specify how the eigenvectors are to be computed.

Values:

	
enumerator rocblas_evect_original

	Compute eigenvectors for the original symmetric/Hermitian matrix.

	
enumerator rocblas_evect_tridiagonal

	Compute eigenvectors for the symmetric tridiagonal matrix.

	
enumerator rocblas_evect_none

	No eigenvectors are computed.

rocblas_workmode

	
enum rocblas_workmode

	Used to enable the use of fast algorithms (with out-of-place computations) in some of the routines.

Values:

	
enumerator rocblas_outofplace

	Out-of-place computations are allowed; this requires extra device memory for workspace.

	
enumerator rocblas_inplace

	If not enough memory is available, this forces in-place computations.

rocblas_eform

	
enum rocblas_eform

	Used to specify the form of the generalized eigenproblem.

Values:

	
enumerator rocblas_eform_ax

	The problem is \(Ax = \lambda Bx\).

	
enumerator rocblas_eform_abx

	The problem is \(ABx = \lambda x\).

	
enumerator rocblas_eform_bax

	The problem is \(BAx = \lambda x\).

3.2. LAPACK Auxiliary Functions

These are functions that support more advanced LAPACK routines.
The auxiliary functions are divided into the following categories:

	Vector and Matrix manipulations. Some basic operations with vectors and matrices that are not part of the BLAS standard.

	Householder reflections. Generation and application of Householder matrices.

	Bidiagonal forms. Computations specialized in bidiagonal matrices.

	Tridiagonal forms. Computations specialized in tridiagonal matrices.

	Symmetric matrices. Computations specialized in symmetric matrices.

	Orthonormal matrices. Generation and application of orthonormal matrices.

	Unitary matrices. Generation and application of unitary matrices.

Note

Throughout the APIs’ descriptions, we use the following notations:

	x[i] stands for the i-th element of vector x, while A[i,j] represents the element
in the i-th row and j-th column of matrix A. Indices are 1-based, i.e. x[1] is the first
element of x.

	If X is a real vector or matrix, \(X^T\) indicates its transpose; if X is complex, then
\(X^H\) represents its conjugate transpose. When X could be real or complex, we use X’ to
indicate X transposed or X conjugate transposed, accordingly.

	x_i \(=x_i\); we sometimes use both notations, \(x_i\) when displaying mathematical
equations, and x_i in the text describing the function parameters.

3.2.1. Vector and Matrix manipulations

List of vector and matrix manipulations

	rocsolver_<type>lacgv()

	rocsolver_<type>laswp()

rocsolver_<type>lacgv()

	
rocblas_status rocsolver_zlacgv(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *x, const rocblas_int incx)

	

	
rocblas_status rocsolver_clacgv(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *x, const rocblas_int incx)

	LACGV conjugates the complex vector x.

It conjugates the n entries of a complex vector x with increment incx.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The dimension of vector x.

	[inout] x: pointer to type. Array on the GPU of size at least n (size depends on the value of incx). On entry, the vector x. On exit, each entry is overwritten with its conjugate value.

	[in] incx: rocblas_int. incx != 0. The distance between two consecutive elements of x. If incx is negative, the elements of x are indexed in reverse order.

rocsolver_<type>laswp()

	
rocblas_status rocsolver_zlaswp(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const rocblas_int *ipiv, const rocblas_int incx)

	

	
rocblas_status rocsolver_claswp(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const rocblas_int *ipiv, const rocblas_int incx)

	

	
rocblas_status rocsolver_dlaswp(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const rocblas_int *ipiv, const rocblas_int incx)

	

	
rocblas_status rocsolver_slaswp(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const rocblas_int *ipiv, const rocblas_int incx)

	LASWP performs a series of row interchanges on the matrix A.

Row interchanges are done one by one. If \(\text{ipiv}[k_1 + (j - k_1) \cdot \text{abs}(\text{incx})] = r\), then the j-th row of A will be interchanged with the r-th row of A, for \(j = k_1,k_1+1,\dots,k_2\). Indices \(k_1\) and \(k_2\) are 1-based indices.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to which the row interchanges will be applied. On exit, the resulting permuted matrix.

	[in] lda: rocblas_int. lda > 0. The leading dimension of the array A.

	[in] k1: rocblas_int. k1 > 0. The k_1 index. It is the first element of ipiv for which a row interchange will be done. This is a 1-based index.

	[in] k2: rocblas_int. k2 > k1 > 0. The k_2 index. k_2 - k_1 + 1 is the number of elements of ipiv for which a row interchange will be done. This is a 1-based index.

	[in] ipiv: pointer to rocblas_int. Array on the GPU of dimension at least k_1 + (k_2 - k_1)*abs(incx). The vector of pivot indices. Only the elements in positions k_1 through k_1 + (k_2 - k_1)*abs(incx) of this vector are accessed. Elements of ipiv are considered 1-based.

	[in] incx: rocblas_int. incx != 0. The distance between successive values of ipiv. If incx is negative, the pivots are applied in reverse order.

3.2.2. Householder reflections

List of Householder functions

	rocsolver_<type>larfg()

	rocsolver_<type>larft()

	rocsolver_<type>larf()

	rocsolver_<type>larfb()

rocsolver_<type>larfg()

	
rocblas_status rocsolver_zlarfg(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *alpha, rocblas_double_complex *x, const rocblas_int incx, rocblas_double_complex *tau)

	

	
rocblas_status rocsolver_clarfg(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *alpha, rocblas_float_complex *x, const rocblas_int incx, rocblas_float_complex *tau)

	

	
rocblas_status rocsolver_dlarfg(rocblas_handle handle, const rocblas_int n, double *alpha, double *x, const rocblas_int incx, double *tau)

	

	
rocblas_status rocsolver_slarfg(rocblas_handle handle, const rocblas_int n, float *alpha, float *x, const rocblas_int incx, float *tau)

	LARFG generates a Householder reflector H of order n.

The reflector H is such that

\[\begin{split} H'\left[\begin{array}{c} \text{alpha}\\ x \end{array}\right]=\left[\begin{array}{c} \text{beta}\\ 0 \end{array}\right] \end{split}\]

where x is an n-1 vector, and alpha and beta are scalars. Matrix H can be generated as

\[\begin{split} H = I - \text{tau}\left[\begin{array}{c} 1\\ v \end{array}\right]\left[\begin{array}{cc} 1 & v' \end{array}\right] \end{split}\]

where v is an n-1 vector, and tau is a scalar known as the Householder scalar. The vector

\[\begin{split} \bar{v}=\left[\begin{array}{c} 1\\ v \end{array}\right] \end{split}\]

is the Householder vector associated with the reflection.

	Note
	The matrix H is orthogonal/unitary (i.e. \(H'H=HH'=I\)). It is symmetric when real (i.e. \(H^T=H\)), but not Hermitian when complex (i.e. \(H^H\neq H\) in general).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The order (size) of reflector H.

	[inout] alpha: pointer to type. A scalar on the GPU. On entry, the scalar alpha. On exit, it is overwritten with beta.

	[inout] x: pointer to type. Array on the GPU of size at least n-1 (size depends on the value of incx). On entry, the vector x, On exit, it is overwritten with vector v.

	[in] incx: rocblas_int. incx > 0. The distance between two consecutive elements of x.

	[out] tau: pointer to type. A scalar on the GPU. The Householder scalar tau.

rocsolver_<type>larft()

	
rocblas_status rocsolver_zlarft(rocblas_handle handle, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int n, const rocblas_int k, rocblas_double_complex *V, const rocblas_int ldv, rocblas_double_complex *tau, rocblas_double_complex *T, const rocblas_int ldt)

	

	
rocblas_status rocsolver_clarft(rocblas_handle handle, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int n, const rocblas_int k, rocblas_float_complex *V, const rocblas_int ldv, rocblas_float_complex *tau, rocblas_float_complex *T, const rocblas_int ldt)

	

	
rocblas_status rocsolver_dlarft(rocblas_handle handle, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int n, const rocblas_int k, double *V, const rocblas_int ldv, double *tau, double *T, const rocblas_int ldt)

	

	
rocblas_status rocsolver_slarft(rocblas_handle handle, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int n, const rocblas_int k, float *V, const rocblas_int ldv, float *tau, float *T, const rocblas_int ldt)

	LARFT generates the triangular factor T of a block reflector H of order n.

The block reflector H is defined as the product of k Householder matrices

\[\begin{split} \begin{array}{cl} H = H_1H_2\cdots H_k & \: \text{if direct indicates forward direction, or} \\ H = H_k\cdots H_2H_1 & \: \text{if direct indicates backward direction} \end{array} \end{split}\]

The triangular factor T is upper triangular in the forward direction and lower triangular in the backward direction. If storev is column-wise, then

\[H = I - VTV' \]

where the i-th column of matrix V contains the Householder vector associated with \(H_i\). If storev is row-wise, then

\[H = I - V'TV \]

where the i-th row of matrix V contains the Householder vector associated with \(H_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] direct: rocblas_direct. Specifies the direction in which the Householder matrices are applied.

	[in] storev: rocblas_storev. Specifies how the Householder vectors are stored in matrix V.

	[in] n: rocblas_int. n >= 0. The order (size) of the block reflector.

	[in] k: rocblas_int. k >= 1. The number of Householder matrices forming H.

	[in] V: pointer to type. Array on the GPU of size ldv*k if column-wise, or ldv*n if row-wise. The matrix of Householder vectors.

	[in] ldv: rocblas_int. ldv >= n if column-wise, or ldv >= k if row-wise. Leading dimension of V.

	[in] tau: pointer to type. Array of k scalars on the GPU. The vector of all the Householder scalars.

	[out] T: pointer to type. Array on the GPU of dimension ldt*k. The triangular factor. T is upper triangular if direct indicates forward direction, otherwise it is lower triangular. The rest of the array is not used.

	[in] ldt: rocblas_int. ldt >= k. The leading dimension of T.

rocsolver_<type>larf()

	
rocblas_status rocsolver_zlarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m, const rocblas_int n, rocblas_double_complex *x, const rocblas_int incx, const rocblas_double_complex *alpha, rocblas_double_complex *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_clarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m, const rocblas_int n, rocblas_float_complex *x, const rocblas_int incx, const rocblas_float_complex *alpha, rocblas_float_complex *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_dlarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m, const rocblas_int n, double *x, const rocblas_int incx, const double *alpha, double *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_slarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m, const rocblas_int n, float *x, const rocblas_int incx, const float *alpha, float *A, const rocblas_int lda)

	LARF applies a Householder reflector H to a general matrix A.

The Householder reflector H, of order m or n, is to be applied to an m-by-n matrix A from the left or the right, depending on the value of side. H is given by

\[H = I - \text{alpha}\cdot xx' \]

where alpha is the Householder scalar and x is a Householder vector. H is never actually computed.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Determines whether H is applied from the left or the right.

	[in] m: rocblas_int. m >= 0. Number of rows of A.

	[in] n: rocblas_int. n >= 0. Number of columns of A.

	[in] x: pointer to type. Array on the GPU of size at least 1 + (m-1)*abs(incx) if left side, or at least 1 + (n-1)*abs(incx) if right side. The Householder vector x.

	[in] incx: rocblas_int. incx != 0. Distance between two consecutive elements of x. If incx < 0, the elements of x are indexed in reverse order.

	[in] alpha: pointer to type. A scalar on the GPU. The Householder scalar. If alpha = 0, then H = I (A will remain the same; x is never used)

	[inout] A: pointer to type. Array on the GPU of size lda*n. On entry, the matrix A. On exit, it is overwritten with H*A (or A*H).

	[in] lda: rocblas_int. lda >= m. Leading dimension of A.

rocsolver_<type>larfb()

	
rocblas_status rocsolver_zlarfb(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *V, const rocblas_int ldv, rocblas_double_complex *T, const rocblas_int ldt, rocblas_double_complex *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_clarfb(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *V, const rocblas_int ldv, rocblas_float_complex *T, const rocblas_int ldt, rocblas_float_complex *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_dlarfb(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *V, const rocblas_int ldv, double *T, const rocblas_int ldt, double *A, const rocblas_int lda)

	

	
rocblas_status rocsolver_slarfb(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_direct direct, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *V, const rocblas_int ldv, float *T, const rocblas_int ldt, float *A, const rocblas_int lda)

	LARFB applies a block reflector H to a general m-by-n matrix A.

The block reflector H is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} HA & \: \text{(No transpose from the left),}\\ H'A & \: \text{(Transpose or conjugate transpose from the left),}\\ AH & \: \text{(No transpose from the right), or}\\ AH' & \: \text{(Transpose or conjugate transpose from the right).} \end{array} \end{split}\]

The block reflector H is defined as the product of k Householder matrices as

\[\begin{split} \begin{array}{cl} H = H_1H_2\cdots H_k & \: \text{if direct indicates forward direction, or} \\ H = H_k\cdots H_2H_1 & \: \text{if direct indicates backward direction} \end{array} \end{split}\]

H is never stored. It is calculated as

\[H = I - VTV' \]

where the i-th column of matrix V contains the Householder vector associated with \(H_i\), if storev is column-wise; or

\[H = I - V'TV \]

where the i-th row of matrix V contains the Householder vector associated with \(H_i\), if storev is row-wise. T is the associated triangular factor as computed by LARFT.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply H.

	[in] trans: rocblas_operation. Specifies whether the block reflector or its transpose/conjugate transpose is to be applied.

	[in] direct: rocblas_direct. Specifies the direction in which the Householder matrices are to be applied to generate H.

	[in] storev: rocblas_storev. Specifies how the Householder vectors are stored in matrix V.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix A.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix A.

	[in] k: rocblas_int. k >= 1. The number of Householder matrices.

	[in] V: pointer to type. Array on the GPU of size ldv*k if column-wise, ldv*n if row-wise and applying from the right, or ldv*m if row-wise and applying from the left. The matrix of Householder vectors.

	[in] ldv: rocblas_int. ldv >= k if row-wise, ldv >= m if column-wise and applying from the left, or ldv >= n if column-wise and applying from the right. Leading dimension of V.

	[in] T: pointer to type. Array on the GPU of dimension ldt*k. The triangular factor of the block reflector.

	[in] ldt: rocblas_int. ldt >= k. The leading dimension of T.

	[inout] A: pointer to type. Array on the GPU of size lda*n. On entry, the matrix A. On exit, it is overwritten with H*A, A*H, H’*A, or A*H’.

	[in] lda: rocblas_int. lda >= m. Leading dimension of A.

3.2.3. Bidiagonal forms

List of functions for bidiagonal forms

	rocsolver_<type>labrd()

	rocsolver_<type>bdsqr()

rocsolver_<type>labrd()

	
rocblas_status rocsolver_zlabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_double_complex *tauq, rocblas_double_complex *taup, rocblas_double_complex *X, const rocblas_int ldx, rocblas_double_complex *Y, const rocblas_int ldy)

	

	
rocblas_status rocsolver_clabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_float_complex *tauq, rocblas_float_complex *taup, rocblas_float_complex *X, const rocblas_int ldx, rocblas_float_complex *Y, const rocblas_int ldy)

	

	
rocblas_status rocsolver_dlabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *D, double *E, double *tauq, double *taup, double *X, const rocblas_int ldx, double *Y, const rocblas_int ldy)

	

	
rocblas_status rocsolver_slabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *D, float *E, float *tauq, float *taup, float *X, const rocblas_int ldx, float *Y, const rocblas_int ldy)

	LABRD computes the bidiagonal form of the first k rows and columns of a general m-by-n matrix A, as well as the matrices X and Y needed to reduce the remaining part of A.

The reduced form is given by:

\[B = Q'AP \]

where the leading k-by-k block of B is upper bidiagonal if m >= n, or lower bidiagonal if m < n. Q and P are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_k, & \text{and} \\ P = G_1G_2\cdots G_k. \end{array} \end{split}\]

Each Householder matrix \(H_i\) and \(G_i\) is given by

\[\begin{split} \begin{array}{cl} H_i = I - \text{tauq}[i]\cdot v_iv_i', & \text{and} \\ G_i = I - \text{taup}[i]\cdot u_iu_i'. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i]=1\); while the first i elements of the Householder vector \(u_i\) are zero, and \(u_i[i+1]=1\). If m < n, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1]=1\); while the first i-1 elements of the Householder vector \(u_i\) are zero, and \(u_i[i]=1\).

The unreduced part of the matrix A can be updated using the block update

\[A = A - VY' - XU' \]

where V and U are the m-by-k and n-by-k matrices formed with the vectors \(v_i\) and \(u_i\), respectively.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[in] k: rocblas_int. min(m,n) >= k >= 0. The number of leading rows and columns of matrix A that will be reduced.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be reduced. On exit, the first k elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n), contain the bidiagonal form B. If m >= n, the elements below the diagonal of the first k columns are the possibly non-zero elements of the Householder vectors associated with Q, while the elements above the superdiagonal of the first k rows are the n - i - 1 possibly non-zero elements of the Householder vectors related to P. If m < n, the elements below the subdiagonal of the first k columns are the m - i - 1 possibly non-zero elements of the Householder vectors related to Q, while the elements above the diagonal of the first k rows are the n - i possibly non-zero elements of the vectors associated with P.

	[in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

	[out] D: pointer to real type. Array on the GPU of dimension k. The diagonal elements of B.

	[out] E: pointer to real type. Array on the GPU of dimension k. The off-diagonal elements of B.

	[out] tauq: pointer to type. Array on the GPU of dimension k. The Householder scalars associated with matrix Q.

	[out] taup: pointer to type. Array on the GPU of dimension k. The Householder scalars associated with matrix P.

	[out] X: pointer to type. Array on the GPU of dimension ldx*k. The m-by-k matrix needed to update the unreduced part of A.

	[in] ldx: rocblas_int. ldx >= m. The leading dimension of X.

	[out] Y: pointer to type. Array on the GPU of dimension ldy*k. The n-by-k matrix needed to update the unreduced part of A.

	[in] ldy: rocblas_int. ldy >= n. The leading dimension of Y.

rocsolver_<type>bdsqr()

	
rocblas_status rocsolver_zbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nv, const rocblas_int nu, const rocblas_int nc, double *D, double *E, rocblas_double_complex *V, const rocblas_int ldv, rocblas_double_complex *U, const rocblas_int ldu, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_cbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nv, const rocblas_int nu, const rocblas_int nc, float *D, float *E, rocblas_float_complex *V, const rocblas_int ldv, rocblas_float_complex *U, const rocblas_int ldu, rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_dbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nv, const rocblas_int nu, const rocblas_int nc, double *D, double *E, double *V, const rocblas_int ldv, double *U, const rocblas_int ldu, double *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_sbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nv, const rocblas_int nu, const rocblas_int nc, float *D, float *E, float *V, const rocblas_int ldv, float *U, const rocblas_int ldu, float *C, const rocblas_int ldc, rocblas_int *info)

	BDSQR computes the singular value decomposition (SVD) of an n-by-n bidiagonal matrix B, using the implicit QR algorithm.

The SVD of B has the form:

\[B = QSP' \]

where S is the n-by-n diagonal matrix of singular values of B, the columns of Q are the left singular vectors of B, and the columns of P are its right singular vectors.

The computation of the singular vectors is optional; this function accepts input matrices U (of size nu-by-n) and V (of size n-by-nv) that are overwritten with \(UQ\) and \(P'V\). If nu = 0 no left vectors are computed; if nv = 0 no right vectors are computed.

Optionally, this function can also compute \(Q'C\) for a given n-by-nc input matrix C.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether B is upper or lower bidiagonal.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix B.

	[in] nv: rocblas_int. nv >= 0. The number of columns of matrix V.

	[in] nu: rocblas_int. nu >= 0. The number of rows of matrix U.

	[in] nc: rocblas_int. nu >= 0. The number of columns of matrix C.

	[inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements of B. On exit, if info = 0, the singular values of B in decreasing order; if info > 0, the diagonal elements of a bidiagonal matrix orthogonally equivalent to B.

	[inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal elements of B. On exit, if info > 0, the off-diagonal elements of a bidiagonal matrix orthogonally equivalent to B (if info = 0 this matrix converges to zero).

	[inout] V: pointer to type. Array on the GPU of dimension ldv*nv. On entry, the matrix V. On exit, it is overwritten with P’*V. (Not referenced if nv = 0).

	[in] ldv: rocblas_int. ldv >= n if nv > 0, or ldv >=1 if nv = 0. The leading dimension of V.

	[inout] U: pointer to type. Array on the GPU of dimension ldu*n. On entry, the matrix U. On exit, it is overwritten with U*Q. (Not referenced if nu = 0).

	[in] ldu: rocblas_int. ldu >= nu. The leading dimension of U.

	[inout] C: pointer to type. Array on the GPU of dimension ldc*nc. On entry, the matrix C. On exit, it is overwritten with Q’*C. (Not referenced if nc = 0).

	[in] ldc: rocblas_int. ldc >= n if nc > 0, or ldc >=1 if nc = 0. The leading dimension of C.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, i elements of E have not converged to zero.

3.2.4. Tridiagonal forms

List of functions for tridiagonal forms

	rocsolver_<type>latrd()

	rocsolver_<type>sterf()

	rocsolver_<type>steqr()

	rocsolver_<type>stedc()

rocsolver_<type>latrd()

	
rocblas_status rocsolver_zlatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, double *E, rocblas_double_complex *tau, rocblas_double_complex *W, const rocblas_int ldw)

	

	
rocblas_status rocsolver_clatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, float *E, rocblas_float_complex *tau, rocblas_float_complex *W, const rocblas_int ldw)

	

	
rocblas_status rocsolver_dlatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *E, double *tau, double *W, const rocblas_int ldw)

	

	
rocblas_status rocsolver_slatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *E, float *tau, float *W, const rocblas_int ldw)

	LATRD computes the tridiagonal form of k rows and columns of a symmetric/hermitian matrix A, as well as the matrix W needed to update the remaining part of A.

The reduced form is given by:

\[T = Q'AQ \]

If uplo is lower, the first k rows and columns of T form the tridiagonal block. If uplo is upper, then the last k rows and columns of T form the tridiagonal block. Q is an orthogonal/unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_k & \text{if uplo indicates lower, or}\\ Q = H_nH_{n-1}\cdots H_{n-k+1} & \text{if uplo is upper}. \end{array} \end{split}\]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{tau}[i]\cdot v_iv_i' \]

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\). If uplo is upper, the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

The unreduced part of the matrix A can be updated using a rank update of the form:

\[A = A - VW' - WV' \]

where V is the n-by-k matrix formed by the vectors \(v_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[in] k: rocblas_int. 0 <= k <= n. The number of rows and columns of the matrix A to be reduced.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the n-by-n matrix to be reduced. On exit, if uplo is lower, the first k columns have been reduced to tridiagonal form (given in the diagonal elements of A and the array E), the elements below the diagonal contain the possibly non-zero entries of the Householder vectors associated with Q, stored as columns. If uplo is upper, the last k columns have been reduced to tridiagonal form (given in the diagonal elements of A and the array E), the elements above the diagonal contain the possibly non-zero entries of the Householder vectors associated with Q, stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] E: pointer to real type. Array on the GPU of dimension n-1. If upper (lower), the last (first) k elements of E are the off-diagonal elements of the computed tridiagonal block.

	[out] tau: pointer to type. Array on the GPU of dimension n-1. If upper (lower), the last (first) k elements of tau are the Householder scalars related to Q.

	[out] W: pointer to type. Array on the GPU of dimension ldw*k. The n-by-k matrix needed to update the unreduced part of A.

	[in] ldw: rocblas_int. ldw >= n. The leading dimension of W.

rocsolver_<type>sterf()

	
rocblas_status rocsolver_dsterf(rocblas_handle handle, const rocblas_int n, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_ssterf(rocblas_handle handle, const rocblas_int n, float *D, float *E, rocblas_int *info)

	STERF computes the eigenvalues of a symmetric tridiagonal matrix.

The eigenvalues of the symmetric tridiagonal matrix are computed by the Pal-Walker-Kahan variant of the QL/QR algorithm, and returned in increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric off-diagonal elements E.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

	[inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order. If info > 0, the diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same eigenvalues).

	[inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal elements of the tridiagonal matrix. On exit, if info = 0, this array converges to zero. If info > 0, the off-diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same eigenvalues).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, STERF did not converge. i elements of E did not converge to zero.

rocsolver_<type>steqr()

	
rocblas_status rocsolver_zsteqr(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, double *D, double *E, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_csteqr(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, float *D, float *E, rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_dsteqr(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, double *D, double *E, double *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_ssteqr(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, float *D, float *E, float *C, const rocblas_int ldc, rocblas_int *info)

	STEQR computes the eigenvalues and (optionally) eigenvectors of a symmetric tridiagonal matrix.

The eigenvalues of the symmetric tridiagonal matrix are computed by the implicit QL/QR algorithm, and returned in increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric off-diagonal elements E. When D and E correspond to the tridiagonal form of a full symmetric/Hermitian matrix, as returned by, e.g., SYTRD or HETRD, the eigenvectors of the original matrix can also be computed, depending on the value of evect.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies how the eigenvectors are computed.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

	[inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order. If info > 0, the diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same eigenvalues).

	[inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal elements of the tridiagonal matrix. On exit, if info = 0, this array converges to zero. If info > 0, the off-diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same eigenvalues).

	[inout] C: pointer to type. Array on the GPU of dimension ldc*n. On entry, if evect is original, the orthogonal/unitary matrix used for the reduction to tridiagonal form as returned by, e.g.,

ORGTR or UNGTR. On exit, it is overwritten with the eigenvectors of the original symmetric/Hermitian matrix (if evect is original), or the eigenvectors of the tridiagonal matrix (if evect is tridiagonal). (Not referenced if evect is none).

	[in] ldc: rocblas_int. ldc >= n if evect is original or tridiagonal. Specifies the leading dimension of C. (Not referenced if evect is none).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, STEQR did not converge. i elements of E did not converge to zero.

rocsolver_<type>stedc()

	
rocblas_status rocsolver_zstedc(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, double *D, double *E, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_cstedc(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, float *D, float *E, rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_dstedc(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, double *D, double *E, double *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_sstedc(rocblas_handle handle, const rocblas_evect evect, const rocblas_int n, float *D, float *E, float *C, const rocblas_int ldc, rocblas_int *info)

	STEDC computes the eigenvalues and (optionally) eigenvectors of a symmetric tridiagonal matrix.

This function uses the divide and conquer method to compute the eigenvectors. The eigenvalues are returned in increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric off-diagonal elements E. When D and E correspond to the tridiagonal form of a full symmetric/Hermitian matrix, as returned by, e.g., SYTRD or HETRD, the eigenvectors of the original matrix can also be computed, depending on the value of evect.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies how the eigenvectors are computed.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

	[inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order.

	[inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal elements of the tridiagonal matrix. On exit, if info = 0, the values of this array are destroyed.

	[inout] C: pointer to type. Array on the GPU of dimension ldc*n. On entry, if evect is original, the orthogonal/unitary matrix used for the reduction to tridiagonal form as returned by, e.g.,

ORGTR or UNGTR. On exit, if info = 0, it is overwritten with the eigenvectors of the original symmetric/Hermitian matrix (if evect is original), or the eigenvectors of the tridiagonal matrix (if evect is tridiagonal). (Not referenced if evect is none).

	[in] ldc: rocblas_int. ldc >= n if evect is original or tridiagonal. Specifies the leading dimension of C. (Not referenced if evect is none).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, STEDC failed to compute an eigenvalue on the sub-matrix formed by the rows and columns info/(n+1) through mod(info,n+1).

3.2.5. Symmetric matrices

List of functions for symmetric matrices

	rocsolver_<type>lasyf()

rocsolver_<type>lasyf()

	
rocblas_status rocsolver_zlasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nb, rocblas_int *kb, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_clasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nb, rocblas_int *kb, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dlasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nb, rocblas_int *kb, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_slasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nb, rocblas_int *kb, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	LASYF computes a partial factorization of a symmetric matrix \(A\) using Bunch-Kaufman diagonal pivoting.

The partial factorization has the form

\[\begin{split} A = \left[\begin{array}{cc} I & U_{12} \\ 0 & U_{22} \end{array} \right] \left[\begin{array}{cc} A_{11} & 0 \\ 0 & D \end{array} \right] \left[\begin{array}{cc} I & 0 \\ U_{12}^T & U_{22}^T \end{array} \right] \end{split}\]

or

\[\begin{split} A = \left[\begin{array}{cc} L_{11} & 0 \\ L_{21} & I \end{array} \right] \left[\begin{array}{cc} D & 0 \\ 0 & A_{22} \end{array} \right] \left[\begin{array}{cc} L_{11}^T & L_{21}^T \\ 0 & I \end{array} \right] \end{split}\]

depending on the value of uplo. The order of the block diagonal matrix \(D\) is either \(nb\) or \(nb-1\), and is returned in the argument \(kb\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[in] nb: rocblas_int. 2 <= nb <= n. The number of columns of A to be factored.

	[out] kb: pointer to a rocblas_int on the GPU. The number of columns of A that were actually factored (either nb or nb-1).

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix A to be factored. On exit, the partially factored matrix.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. If uplo is upper, then only the last kb elements of ipiv will be set. For n - kb < k <= n, if ipiv[k] > 0 then rows and columns k and ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0, then rows and columns k-1 and -ipiv[k] were interchanged and D[k-1,k-1] to D[k,k] is a 2-by-2 diagonal block. If uplo is lower, then only the first kb elements of ipiv will be set. For 1 <= k <= kb, if ipiv[k] > 0 then rows and columns k and ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k+1] < 0, then rows and columns k+1 and -ipiv[k] were interchanged and D[k,k] to D[k+1,k+1] is a 2-by-2 diagonal block.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D is singular. D[j,j] is the first diagonal zero.

3.2.6. Orthonormal matrices

List of functions for orthonormal matrices

	rocsolver_<type>org2r()

	rocsolver_<type>orgqr()

	rocsolver_<type>orgl2()

	rocsolver_<type>orglq()

	rocsolver_<type>org2l()

	rocsolver_<type>orgql()

	rocsolver_<type>orgbr()

	rocsolver_<type>orgtr()

	rocsolver_<type>orm2r()

	rocsolver_<type>ormqr()

	rocsolver_<type>orml2()

	rocsolver_<type>ormlq()

	rocsolver_<type>orm2l()

	rocsolver_<type>ormql()

	rocsolver_<type>ormbr()

	rocsolver_<type>ormtr()

rocsolver_<type>org2r()

	
rocblas_status rocsolver_dorg2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorg2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORG2R generates an m-by-n Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k. \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQRF, with the Householder vectors in the first k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

rocsolver_<type>orgqr()

	
rocblas_status rocsolver_dorgqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorgqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORGQR generates an m-by-n Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQRF, with the Householder vectors in the first k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

rocsolver_<type>orgl2()

	
rocblas_status rocsolver_dorgl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorgl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORGL2 generates an m-by-n Matrix Q with orthonormal rows.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

rocsolver_<type>orglq()

	
rocblas_status rocsolver_dorglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORGLQ generates an m-by-n Matrix Q with orthonormal rows.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

rocsolver_<type>org2l()

	
rocblas_status rocsolver_dorg2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorg2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORG2L generates an m-by-n Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQLF, with the Householder vectors in the last k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

rocsolver_<type>orgql()

	
rocblas_status rocsolver_dorgql(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorgql(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORGQL generates an m-by-n Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the last n column of the product of k Householder reflectors of order m

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQLF, with the Householder vectors in the last k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

rocsolver_<type>orgbr()

	
rocblas_status rocsolver_dorgbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorgbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

	ORGBR generates an m-by-n Matrix Q with orthonormal rows or columns.

If storev is column-wise, then the matrix Q has orthonormal columns. If m >= k, Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k \]

If m < k, Q is defined as the product of Householder reflectors of order m

\[Q = H_1H_2\cdots H_{m-1} \]

On the other hand, if storev is row-wise, then the matrix Q has orthonormal rows. If n > k, Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_kH_{k-1}\cdots H_1 \]

If n <= k, Q is defined as the product of Householder reflectors of order n

\[Q = H_{n-1}H_{n-2}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEBRD in its arguments A and tauq or taup.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q. If row-wise, then min(n,k) <= m <= n.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q. If column-wise, then min(m,k) <= n <= m.

	[in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-wise) of the original matrix reduced by

GEBRD.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder vectors as returned by

GEBRD. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension min(m,k) if column-wise, or min(n,k) if row-wise. The Householder scalars as returned by

GEBRD.

rocsolver_<type>orgtr()

	
rocblas_status rocsolver_dorgtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sorgtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	ORGTR generates an n-by-n orthogonal Matrix Q.

Q is defined as the product of n-1 Householder reflectors of order n. If uplo indicates upper, then Q has the form

\[Q = H_{n-1}H_{n-2}\cdots H_1 \]

On the other hand, if uplo indicates lower, then Q has the form

\[Q = H_1H_2\cdots H_{n-1} \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by SYTRD in its arguments A and tau.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the

SYTRD factorization was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix Q.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder vectors as returned by

SYTRD. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension n-1. The Householder scalars as returned by

SYTRD.

rocsolver_<type>orm2r()

	
rocblas_status rocsolver_dorm2r(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sorm2r(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORM2R multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_1H_2 \cdots H_k \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QR factorization GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQRF in the first k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormqr()

	
rocblas_status rocsolver_dormqr(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sormqr(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORMQR multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QR factorization GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQRF in the first k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>orml2()

	
rocblas_status rocsolver_dorml2(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sorml2(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORML2 multiplies a matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the LQ factorization GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The Householder vectors as returned by

GELQF in the first k rows of its argument A.

	[in] lda: rocblas_int. lda >= k. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormlq()

	
rocblas_status rocsolver_dormlq(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sormlq(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORMLQ multiplies a matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the LQ factorization GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The Householder vectors as returned by

GELQF in the first k rows of its argument A.

	[in] lda: rocblas_int. lda >= k. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>orm2l()

	
rocblas_status rocsolver_dorm2l(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sorm2l(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORM2L multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QL factorization GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQLF in the last k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormql()

	
rocblas_status rocsolver_dormql(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sormql(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORMQL multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QL factorization GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQLF in the last k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormbr()

	
rocblas_status rocsolver_dormbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sormbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORMBR multiplies a matrix Q with orthonormal rows or columns by a general m-by-n matrix C.

If storev is column-wise, then the matrix Q has orthonormal columns. If storev is row-wise, then the matrix Q has orthonormal rows. The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

The order q of the orthogonal matrix Q is q = m if applying from the left, or q = n if applying from the right.

When storev is column-wise, if q >= k, then Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k, \]

and if q < k, then Q is defined as the product

\[Q = H_1H_2\cdots H_{q-1}. \]

When storev is row-wise, if q > k, then Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k, \]

and if q <= k, Q is defined as the product

\[Q = H_1H_2\cdots H_{q-1}. \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors and scalars as returned by GEBRD in its arguments A and tauq or taup.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-wise) of the original matrix reduced by

GEBRD.

	[in] A: pointer to type. Array on the GPU of size lda*min(q,k) if column-wise, or lda*q if row-wise. The Householder vectors as returned by

GEBRD.

	[in] lda: rocblas_int. lda >= q if column-wise, or lda >= min(q,k) if row-wise. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least min(q,k). The Householder scalars as returned by

GEBRD.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormtr()

	
rocblas_status rocsolver_dormtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill uplo, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_sormtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill uplo, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

	ORMTR multiplies an orthogonal matrix Q by a general m-by-n matrix C.

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^TC & \: \text{Transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^T & \: \text{Transpose from the right.} \end{array} \end{split}\]

The order q of the orthogonal matrix Q is q = m if applying from the left, or q = n if applying from the right.

Q is defined as a product of q-1 Householder reflectors. If uplo indicates upper, then Q has the form

\[Q = H_{q-1}H_{q-2}\cdots H_1. \]

On the other hand, if uplo indicates lower, then Q has the form

\[Q = H_1H_2\cdots H_{q-1} \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors and scalars as returned by SYTRD in its arguments A and tau.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] uplo: rocblas_fill. Specifies whether the

SYTRD factorization was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] A: pointer to type. Array on the GPU of size lda*q. On entry, the Householder vectors as returned by

SYTRD.

	[in] lda: rocblas_int. lda >= q. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least q-1. The Householder scalars as returned by

SYTRD.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.2.7. Unitary matrices

List of functions for unitary matrices

	rocsolver_<type>ung2r()

	rocsolver_<type>ungqr()

	rocsolver_<type>ungl2()

	rocsolver_<type>unglq()

	rocsolver_<type>ung2l()

	rocsolver_<type>ungql()

	rocsolver_<type>ungbr()

	rocsolver_<type>ungtr()

	rocsolver_<type>unm2r()

	rocsolver_<type>unmqr()

	rocsolver_<type>unml2()

	rocsolver_<type>unmlq()

	rocsolver_<type>unm2l()

	rocsolver_<type>unmql()

	rocsolver_<type>unmbr()

	rocsolver_<type>unmtr()

rocsolver_<type>ung2r()

	
rocblas_status rocsolver_zung2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cung2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNG2R generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQRF, with the Householder vectors in the first k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

rocsolver_<type>ungqr()

	
rocblas_status rocsolver_zungqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cungqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGQR generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k \]

Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQRF, with the Householder vectors in the first k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

rocsolver_<type>ungl2()

	
rocblas_status rocsolver_zungl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cungl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGL2 generates an m-by-n complex Matrix Q with orthonormal rows.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_k^HH_{k-1}^H\cdots H_1^H \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

rocsolver_<type>unglq()

	
rocblas_status rocsolver_zunglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cunglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGLQ generates an m-by-n complex Matrix Q with orthonormal rows.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_k^HH_{k-1}^H\cdots H_1^H \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

rocsolver_<type>ung2l()

	
rocblas_status rocsolver_zung2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cung2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNG2L generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQLF, with the Householder vectors in the last k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

rocsolver_<type>ungql()

	
rocblas_status rocsolver_zungql(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cungql(rocblas_handle handle, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGQL generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

\[Q = H_kH_{k-1}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

	[in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

	[in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as returned by

GEQLF, with the Householder vectors in the last k columns. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

rocsolver_<type>ungbr()

	
rocblas_status rocsolver_zungbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cungbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGBR generates an m-by-n complex Matrix Q with orthonormal rows or columns.

If storev is column-wise, then the matrix Q has orthonormal columns. If m >= k, Q is defined as the first n columns of the product of k Householder reflectors of order m

\[Q = H_1H_2\cdots H_k \]

If m < k, Q is defined as the product of Householder reflectors of order m

\[Q = H_1H_2\cdots H_{m-1} \]

On the other hand, if storev is row-wise, then the matrix Q has orthonormal rows. If n > k, Q is defined as the first m rows of the product of k Householder reflectors of order n

\[Q = H_kH_{k-1}\cdots H_1 \]

If n <= k, Q is defined as the product of Householder reflectors of order n

\[Q = H_{n-1}H_{n-2}\cdots H_1 \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by GEBRD in its arguments A and tauq or taup.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix Q. If row-wise, then min(n,k) <= m <= n.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix Q. If column-wise, then min(m,k) <= n <= m.

	[in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-wise) of the original matrix reduced by

GEBRD.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder vectors as returned by

GEBRD. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension min(m,k) if column-wise, or min(n,k) if row-wise. The Householder scalars as returned by

GEBRD.

rocsolver_<type>ungtr()

	
rocblas_status rocsolver_zungtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cungtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	UNGTR generates an n-by-n unitary Matrix Q.

Q is defined as the product of n-1 Householder reflectors of order n. If uplo indicates upper, then Q has the form

\[Q = H_{n-1}H_{n-2}\cdots H_1 \]

On the other hand, if uplo indicates lower, then Q has the form

\[Q = H_1H_2\cdots H_{n-1} \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors \(v_i\) and scalars \(\text{ipiv}[i]\), as returned by HETRD in its arguments A and tau.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the

HETRD factorization was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix Q.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder vectors as returned by

HETRD. On exit, the computed matrix Q.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension n-1. The Householder scalars as returned by

HETRD.

rocsolver_<type>unm2r()

	
rocblas_status rocsolver_zunm2r(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunm2r(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNM2R multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QR factorization GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQRF in the first k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmqr()

	
rocblas_status rocsolver_zunmqr(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunmqr(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNMQR multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QR factorization GEQRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQRF in the first k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQRF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unml2()

	
rocblas_status rocsolver_zunml2(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunml2(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNML2 multiplies a complex matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_k^HH_{k-1}^H\cdots H_1^H \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the LQ factorization GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The Householder vectors as returned by

GELQF in the first k rows of its argument A.

	[in] lda: rocblas_int. lda >= k. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmlq()

	
rocblas_status rocsolver_zunmlq(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunmlq(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNMLQ multiplies a complex matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_k^HH_{k-1}^H\cdots H_1^H \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the LQ factorization GELQF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The Householder vectors as returned by

GELQF in the first k rows of its argument A.

	[in] lda: rocblas_int. lda >= k. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GELQF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unm2l()

	
rocblas_status rocsolver_zunm2l(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunm2l(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNM2L multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QL factorization GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQLF in the last k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmql()

	
rocblas_status rocsolver_zunmql(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunmql(rocblas_handle handle, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNMQL multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

Q is defined as the product of k Householder reflectors

\[Q = H_kH_{k-1}\cdots H_1 \]

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the Householder vectors and scalars returned by the QL factorization GEQLF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder reflectors that form Q.

	[in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by

GEQLF in the last k columns of its argument A.

	[in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as returned by

GEQLF.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmbr()

	
rocblas_status rocsolver_zunmbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunmbr(rocblas_handle handle, const rocblas_storev storev, const rocblas_side side, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int k, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNMBR multiplies a complex matrix Q with orthonormal rows or columns by a general m-by-n matrix C.

If storev is column-wise, then the matrix Q has orthonormal columns. If storev is row-wise, then the matrix Q has orthonormal rows. The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

The order q of the unitary matrix Q is q = m if applying from the left, or q = n if applying from the right.

When storev is column-wise, if q >= k, then Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k, \]

and if q < k, then Q is defined as the product

\[Q = H_1H_2\cdots H_{q-1}. \]

When storev is row-wise, if q > k, then Q is defined as the product of k Householder reflectors

\[Q = H_1H_2\cdots H_k, \]

and if q <= k, Q is defined as the product

\[Q = H_1H_2\cdots H_{q-1}. \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors and scalars as returned by GEBRD in its arguments A and tauq or taup.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-wise) of the original matrix reduced by

GEBRD.

	[in] A: pointer to type. Array on the GPU of size lda*min(q,k) if column-wise, or lda*q if row-wise. The Householder vectors as returned by

GEBRD.

	[in] lda: rocblas_int. lda >= q if column-wise, or lda >= min(q,k) if row-wise. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least min(q,k). The Householder scalars as returned by

GEBRD.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmtr()

	
rocblas_status rocsolver_zunmtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill uplo, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv, rocblas_double_complex *C, const rocblas_int ldc)

	

	
rocblas_status rocsolver_cunmtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill uplo, const rocblas_operation trans, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const rocblas_int ldc)

	UNMTR multiplies a unitary matrix Q by a general m-by-n matrix C.

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

\[\begin{split} \begin{array}{cl} QC & \: \text{No transpose from the left,}\\ Q^HC & \: \text{Conjugate transpose from the left,}\\ CQ & \: \text{No transpose from the right, and}\\ CQ^H & \: \text{Conjugate transpose from the right.} \end{array} \end{split}\]

The order q of the unitary matrix Q is q = m if applying from the left, or q = n if applying from the right.

Q is defined as a product of q-1 Householder reflectors. If uplo indicates upper, then Q has the form

\[Q = H_{q-1}H_{q-2}\cdots H_1. \]

On the other hand, if uplo indicates lower, then Q has the form

\[Q = H_1H_2\cdots H_{q-1} \]

The Householder matrices \(H_i\) are never stored, they are computed from its corresponding Householder vectors and scalars as returned by HETRD in its arguments A and tau.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] side: rocblas_side. Specifies from which side to apply Q.

	[in] uplo: rocblas_fill. Specifies whether the

HETRD factorization was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be applied.

	[in] m: rocblas_int. m >= 0. Number of rows of matrix C.

	[in] n: rocblas_int. n >= 0. Number of columns of matrix C.

	[in] A: pointer to type. Array on the GPU of size lda*q. On entry, the Householder vectors as returned by

HETRD.

	[in] lda: rocblas_int. lda >= q. Leading dimension of A.

	[in] ipiv: pointer to type. Array on the GPU of dimension at least q-1. The Householder scalars as returned by

HETRD.

	[inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is overwritten with Q*C, C*Q, Q’*C, or C*Q’.

	[in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.3. LAPACK Functions

LAPACK routines solve complex Numerical Linear Algebra problems. These functions are organized
in the following categories:

	Triangular factorizations. Based on Gaussian elimination.

	Orthogonal factorizations. Based on Householder reflections.

	Problem and matrix reductions. Transformation of matrices and problems into equivalent forms.

	Linear-systems solvers. Based on triangular factorizations.

	Least-squares solvers. Based on orthogonal factorizations.

	Symmetric eigensolvers. Eigenproblems for symmetric matrices.

	Singular value decomposition. Singular values and related problems for general matrices.

Note

Throughout the APIs’ descriptions, we use the following notations:

	x[i] stands for the i-th element of vector x, while A[i,j] represents the element
in the i-th row and j-th column of matrix A. Indices are 1-based, i.e. x[1] is the first
element of x.

	If X is a real vector or matrix, \(X^T\) indicates its transpose; if X is complex, then
\(X^H\) represents its conjugate transpose. When X could be real or complex, we use X’ to
indicate X transposed or X conjugate transposed, accordingly.

	x_i \(=x_i\); we sometimes use both notations, \(x_i\) when displaying mathematical
equations, and x_i in the text describing the function parameters.

3.3.1. Triangular factorizations

List of triangular factorizations

	rocsolver_<type>potf2()

	rocsolver_<type>potf2_batched()

	rocsolver_<type>potf2_strided_batched()

	rocsolver_<type>potrf()

	rocsolver_<type>potrf_batched()

	rocsolver_<type>potrf_strided_batched()

	rocsolver_<type>getf2()

	rocsolver_<type>getf2_batched()

	rocsolver_<type>getf2_strided_batched()

	rocsolver_<type>getrf()

	rocsolver_<type>getrf_batched()

	rocsolver_<type>getrf_strided_batched()

	rocsolver_<type>sytf2()

	rocsolver_<type>sytf2_batched()

	rocsolver_<type>sytf2_strided_batched()

	rocsolver_<type>sytrf()

	rocsolver_<type>sytrf_batched()

	rocsolver_<type>sytrf_strided_batched()

rocsolver_<type>potf2()

	
rocblas_status rocsolver_zpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_spotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	POTF2 computes the Cholesky factorization of a real symmetric (complex Hermitian) positive definite matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form:

\[\begin{split} \begin{array}{cl} A = U'U & \: \text{if uplo is upper, or}\\ A = LL' & \: \text{if uplo is lower.} \end{array} \end{split}\]

U is an upper triangular matrix and L is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A to be factored. On exit, the lower or upper triangular factor.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful factorization of matrix A. If info = j > 0, the leading minor of order j of A is not positive definite. The factorization stopped at this point.

rocsolver_<type>potf2_batched()

	
rocblas_status rocsolver_zpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	POTF2_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian) positive definite matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_i\) in the batch has the form:

\[\begin{split} \begin{array}{cl} A_i = U_i'U_i & \: \text{if uplo is upper, or}\\ A_i = L_iL_i' & \: \text{if uplo is lower.} \end{array} \end{split}\]

\(U_i\) is an upper triangular matrix and \(L_i\) is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not positive definite. The i-th factorization stopped at this point.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potf2_strided_batched()

	
rocblas_status rocsolver_zpotf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	POTF2_STRIDED_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian) positive definite matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_i\) in the batch has the form:

\[\begin{split} \begin{array}{cl} A_i = U_i'U_i & \: \text{if uplo is upper, or}\\ A_i = L_iL_i' & \: \text{if uplo is lower.} \end{array} \end{split}\]

\(U_i\) is an upper triangular matrix and \(L_i\) is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not positive definite. The i-th factorization stopped at this point.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potrf()

	
rocblas_status rocsolver_zpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_spotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	POTRF computes the Cholesky factorization of a real symmetric (complex Hermitian) positive definite matrix A.

(This is the blocked version of the algorithm).

The factorization has the form:

\[\begin{split} \begin{array}{cl} A = U'U & \: \text{if uplo is upper, or}\\ A = LL' & \: \text{if uplo is lower.} \end{array} \end{split}\]

U is an upper triangular matrix and L is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A to be factored. On exit, the lower or upper triangular factor.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful factorization of matrix A. If info = j > 0, the leading minor of order j of A is not positive definite. The factorization stopped at this point.

rocsolver_<type>potrf_batched()

	
rocblas_status rocsolver_zpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	POTRF_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian) positive definite matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_i\) in the batch has the form:

\[\begin{split} \begin{array}{cl} A_i = U_i'U_i & \: \text{if uplo is upper, or}\\ A_i = L_iL_i' & \: \text{if uplo is lower.} \end{array} \end{split}\]

\(U_i\) is an upper triangular matrix and \(L_i\) is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not positive definite. The i-th factorization stopped at this point.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potrf_strided_batched()

	
rocblas_status rocsolver_zpotrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	POTRF_STRIDED_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian) positive definite matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_i\) in the batch has the form:

\[\begin{split} \begin{array}{cl} A_i = U_i'U_i & \: \text{if uplo is upper, or}\\ A_i = L_iL_i' & \: \text{if uplo is lower.} \end{array} \end{split}\]

\(U_i\) is an upper triangular matrix and \(L_i\) is lower triangular.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not positive definite. The i-th factorization stopped at this point.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getf2()

	
rocblas_status rocsolver_zgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	GETF2 computes the LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

\[A = PLU \]

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension min(m,n). The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= i <= min(m,n), the row i of the matrix was interchanged with row ipiv[i]. Matrix P of the factorization can be derived from ipiv.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is singular. U[j,j] is the first zero pivot.

rocsolver_<type>getf2_batched()

	
rocblas_status rocsolver_zgetf2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetf2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetf2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetf2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETF2_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting with row interchanges.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = P_iL_iU_i \]

where \(P_i\) is a permutation matrix, \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n). Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n), the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getf2_strided_batched()

	
rocblas_status rocsolver_zgetf2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetf2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetf2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetf2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETF2_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting with row interchanges.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = P_iL_iU_i \]

where \(P_i\) is a permutation matrix, \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors of pivots indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n). Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n), the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf()

	
rocblas_status rocsolver_zgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	GETRF computes the LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

\[A = PLU \]

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension min(m,n). The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= i <= min(m,n), the row i of the matrix was interchanged with row ipiv[i]. Matrix P of the factorization can be derived from ipiv.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is singular. U[j,j] is the first zero pivot.

rocsolver_<type>getrf_batched()

	
rocblas_status rocsolver_zgetrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETRF_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting with row interchanges.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = P_iL_iU_i \]

where \(P_i\) is a permutation matrix, \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n). Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n), the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_strided_batched()

	
rocblas_status rocsolver_zgetrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETRF_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting with row interchanges.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = P_iL_iU_i \]

where \(P_i\) is a permutation matrix, \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors of pivots indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n). Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n), the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytf2()

	
rocblas_status rocsolver_zsytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_csytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dsytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_ssytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	SYTF2 computes the factorization of a symmetric indefinite matrix \(A\) using Bunch-Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A = U D U^T & \: \text{or}\\ A = L D L^T & \end{array} \end{split}\]

where \(U\) or \(L\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k)\).

Specifically, \(U\) and \(L\) are computed as

\[\begin{split} \begin{array}{cl} U = P(n) U(n) \cdots P(k) U(k) \cdots & \: \text{and}\\ L = P(1) L(1) \cdots P(k) L(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D(k)\), and \(P(k)\) is a permutation matrix defined by \(ipiv[k]\). If we let \(s\) denote the order of block \(D(k)\), then \(U(k)\) and \(L(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D(k)\) is stored in \(A[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A\). If \(s = 2\) and uplo is upper, then \(D(k)\) is stored in \(A[k-1,k-1]\), \(A[k-1,k]\), and \(A[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A\). If \(s = 2\) and uplo is lower, then \(D(k)\) is stored in \(A[k,k]\), \(A[k+1,k]\), and \(A[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix A to be factored. On exit, the block diagonal matrix D and the multipliers needed to compute U or L.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv[k] > 0 then rows and columns k and ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0 and uplo is upper (or ipiv[k] = ipiv[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv[k] (or rows and columns k+1 and -ipiv[k]) were interchanged and D[k-1,k-1] to D[k,k] (or D[k,k] to D[k+1,k+1]) is a 2-by-2 diagonal block.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D is singular. D[j,j] is the first diagonal zero.

rocsolver_<type>sytf2_batched()

	
rocblas_status rocsolver_zsytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_csytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dsytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	SYTF2_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A_i = U_i D_i U_i^T & \: \text{or}\\ A_i = L_i D_i L_i^T & \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D_i\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D_i(k)\).

Specifically, \(U_i\) and \(L_i\) are computed as

\[\begin{split} \begin{array}{cl} U_i = P_i(n) U_i(n) \cdots P_i(k) U_i(k) \cdots & \: \text{and}\\ L_i = P_i(1) L_i(1) \cdots P_i(k) L_i(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D_i(k)\), and \(P_i(k)\) is a permutation matrix defined by \(ipiv_i[k]\). If we let \(s\) denote the order of block \(D_i(k)\), then \(U_i(k)\) and \(L_i(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U_i(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L_i(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D_i(k)\) is stored in \(A_i[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A_i\). If \(s = 2\) and uplo is upper, then \(D_i(k)\) is stored in \(A_i[k-1,k-1]\), \(A_i[k-1,k]\), and \(A_i[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A_i\). If \(s = 2\) and uplo is lower, then \(D_i(k)\) is stored in \(A_i[k,k]\), \(A_i[k+1,k]\), and \(A_i[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the multipliers needed to compute U_i or L_i.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytf2_strided_batched()

	
rocblas_status rocsolver_zsytf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_csytf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dsytf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytf2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	SYTF2_STRIDED_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A_i = U_i D_i U_i^T & \: \text{or}\\ A_i = L_i D_i L_i^T & \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D_i\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D_i(k)\).

Specifically, \(U_i\) and \(L_i\) are computed as

\[\begin{split} \begin{array}{cl} U_i = P_i(n) U_i(n) \cdots P_i(k) U_i(k) \cdots & \: \text{and}\\ L_i = P_i(1) L_i(1) \cdots P_i(k) L_i(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D_i(k)\), and \(P_i(k)\) is a permutation matrix defined by \(ipiv_i[k]\). If we let \(s\) denote the order of block \(D_i(k)\), then \(U_i(k)\) and \(L_i(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U_i(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L_i(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D_i(k)\) is stored in \(A_i[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A_i\). If \(s = 2\) and uplo is upper, then \(D_i(k)\) is stored in \(A_i[k-1,k-1]\), \(A_i[k-1,k]\), and \(A_i[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A_i\). If \(s = 2\) and uplo is lower, then \(D_i(k)\) is stored in \(A_i[k,k]\), \(A_i[k+1,k]\), and \(A_i[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the multipliers needed to compute U_i or L_i.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrf()

	
rocblas_status rocsolver_zsytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_csytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dsytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_ssytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	SYTRF computes the factorization of a symmetric indefinite matrix \(A\) using Bunch-Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A = U D U^T & \: \text{or}\\ A = L D L^T & \end{array} \end{split}\]

where \(U\) or \(L\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D(k)\).

Specifically, \(U\) and \(L\) are computed as

\[\begin{split} \begin{array}{cl} U = P(n) U(n) \cdots P(k) U(k) \cdots & \: \text{and}\\ L = P(1) L(1) \cdots P(k) L(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D(k)\), and \(P(k)\) is a permutation matrix defined by \(ipiv[k]\). If we let \(s\) denote the order of block \(D(k)\), then \(U(k)\) and \(L(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D(k)\) is stored in \(A[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A\). If \(s = 2\) and uplo is upper, then \(D(k)\) is stored in \(A[k-1,k-1]\), \(A[k-1,k]\), and \(A[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A\). If \(s = 2\) and uplo is lower, then \(D(k)\) is stored in \(A[k,k]\), \(A[k+1,k]\), and \(A[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix A to be factored. On exit, the block diagonal matrix D and the multipliers needed to compute U or L.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv[k] > 0 then rows and columns k and ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0 and uplo is upper (or ipiv[k] = ipiv[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv[k] (or rows and columns k+1 and -ipiv[k]) were interchanged and D[k-1,k-1] to D[k,k] (or D[k,k] to D[k+1,k+1]) is a 2-by-2 diagonal block.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D is singular. D[j,j] is the first diagonal zero.

rocsolver_<type>sytrf_batched()

	
rocblas_status rocsolver_zsytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_csytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dsytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	SYTRF_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A_i = U_i D_i U_i^T & \: \text{or}\\ A_i = L_i D_i L_i^T & \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D_i\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D_i(k)\).

Specifically, \(U_i\) and \(L_i\) are computed as

\[\begin{split} \begin{array}{cl} U_i = P_i(n) U_i(n) \cdots P_i(k) U_i(k) \cdots & \: \text{and}\\ L_i = P_i(1) L_i(1) \cdots P_i(k) L_i(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D_i(k)\), and \(P_i(k)\) is a permutation matrix defined by \(ipiv_i[k]\). If we let \(s\) denote the order of block \(D_i(k)\), then \(U_i(k)\) and \(L_i(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U_i(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L_i(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D_i(k)\) is stored in \(A_i[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A_i\). If \(s = 2\) and uplo is upper, then \(D_i(k)\) is stored in \(A_i[k-1,k-1]\), \(A_i[k-1,k]\), and \(A_i[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A_i\). If \(s = 2\) and uplo is lower, then \(D_i(k)\) is stored in \(A_i[k,k]\), \(A_i[k+1,k]\), and \(A_i[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the multipliers needed to compute U_i or L_i.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrf_strided_batched()

	
rocblas_status rocsolver_zsytrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_csytrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dsytrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytrf_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	SYTRF_STRIDED_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

\[\begin{split} \begin{array}{cl} A_i = U_i D_i U_i^T & \: \text{or}\\ A_i = L_i D_i L_i^T & \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is a product of permutation and unit upper/lower triangular matrices (depending on the value of uplo), and \(D_i\) is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks \(D_i(k)\).

Specifically, \(U_i\) and \(L_i\) are computed as

\[\begin{split} \begin{array}{cl} U_i = P_i(n) U_i(n) \cdots P_i(k) U_i(k) \cdots & \: \text{and}\\ L_i = P_i(1) L_i(1) \cdots P_i(k) L_i(k) \cdots & \end{array} \end{split}\]

where \(k\) decreases from \(n\) to 1 (increases from 1 to \(n\)) in steps of 1 or 2, depending on the order of block \(D_i(k)\), and \(P_i(k)\) is a permutation matrix defined by \(ipiv_i[k]\). If we let \(s\) denote the order of block \(D_i(k)\), then \(U_i(k)\) and \(L_i(k)\) are unit upper/lower triangular matrices defined as

\[\begin{split} U_i(k) = \left[\begin{array}{ccc} I_{k-s} & v & 0 \\ 0 & I_s & 0 \\ 0 & 0 & I_{n-k} \end{array} \right] \end{split}\]

and

\[\begin{split} L_i(k) = \left[\begin{array}{ccc} I_{k-1} & 0 & 0 \\ 0 & I_s & 0 \\ 0 & v & I_{n-k-s+1} \end{array} \right]. \end{split}\]

If \(s = 1\), then \(D_i(k)\) is stored in \(A_i[k,k]\) and \(v\) is stored in the upper/lower part of column \(k\) of \(A_i\). If \(s = 2\) and uplo is upper, then \(D_i(k)\) is stored in \(A_i[k-1,k-1]\), \(A_i[k-1,k]\), and \(A_i[k,k]\), and \(v\) is stored in the upper parts of columns \(k-1\) and \(k\) of \(A_i\). If \(s = 2\) and uplo is lower, then \(D_i(k)\) is stored in \(A_i[k,k]\), \(A_i[k+1,k]\), and \(A_i[k+1,k+1]\), and \(v\) is stored in the lower parts of columns \(k\) and \(k+1\) of \(A_i\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the multipliers needed to compute U_i or L_i.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices. Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.2. Orthogonal factorizations

List of orthogonal factorizations

	rocsolver_<type>geqr2()

	rocsolver_<type>geqr2_batched()

	rocsolver_<type>geqr2_strided_batched()

	rocsolver_<type>geqrf()

	rocsolver_<type>geqrf_batched()

	rocsolver_<type>geqrf_strided_batched()

	rocsolver_<type>gerq2()

	rocsolver_<type>gerq2_batched()

	rocsolver_<type>gerq2_strided_batched()

	rocsolver_<type>gerqf()

	rocsolver_<type>gerqf_batched()

	rocsolver_<type>gerqf_strided_batched()

	rocsolver_<type>geql2()

	rocsolver_<type>geql2_batched()

	rocsolver_<type>geql2_strided_batched()

	rocsolver_<type>geqlf()

	rocsolver_<type>geqlf_batched()

	rocsolver_<type>geqlf_strided_batched()

	rocsolver_<type>gelq2()

	rocsolver_<type>gelq2_batched()

	rocsolver_<type>gelq2_strided_batched()

	rocsolver_<type>gelqf()

	rocsolver_<type>gelqf_batched()

	rocsolver_<type>gelqf_strided_batched()

rocsolver_<type>geqr2()

	
rocblas_status rocsolver_zgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GEQR2 computes a QR factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

\[\begin{split} A = Q\left[\begin{array}{c} R\\ 0 \end{array}\right] \end{split}\]

where R is upper triangular (upper trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_1H_2\cdots H_k, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and above the diagonal contain the factor R; the elements below the diagonal are the last m - i elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geqr2_batched()

	
rocblas_status rocsolver_zgeqr2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqr2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqr2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqr2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQR2_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} R_j\\ 0 \end{array}\right] \end{split}\]

where \(R_j\) is upper triangular (upper trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}H_{j_2}\cdots H_{j_k}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqr2_strided_batched()

	
rocblas_status rocsolver_zgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQR2_STRIDED_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} R_j\\ 0 \end{array}\right] \end{split}\]

where \(R_j\) is upper triangular (upper trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}H_{j_2}\cdots H_{j_k}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqrf()

	
rocblas_status rocsolver_zgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GEQRF computes a QR factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

\[\begin{split} A = Q\left[\begin{array}{c} R\\ 0 \end{array}\right] \end{split}\]

where R is upper triangular (upper trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_1H_2\cdots H_k, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and above the diagonal contain the factor R; the elements below the diagonal are the last m - i elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geqrf_batched()

	
rocblas_status rocsolver_zgeqrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqrf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQRF_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} R_j\\ 0 \end{array}\right] \end{split}\]

where \(R_j\) is upper triangular (upper trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}H_{j_2}\cdots H_{j_k}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqrf_strided_batched()

	
rocblas_status rocsolver_zgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQRF_STRIDED_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} R_j\\ 0 \end{array}\right] \end{split}\]

where \(R_j\) is upper triangular (upper trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}H_{j_2}\cdots H_{j_k}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerq2()

	
rocblas_status rocsolver_zgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GERQ2 computes a RQ factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

\[A = \left[\begin{array}{cc} 0 & R \end{array}\right] Q \]

where R is upper triangular (upper trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_1'H_2' \cdots H_k', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gerq2_batched()

	
rocblas_status rocsolver_zgerq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgerq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgerq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgerq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GERQ2_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} 0 & R_j \end{array}\right] Q_j \]

where \(R_j\) is upper triangular (upper trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}'H_{j_2}' \cdots H_{j_k}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last n-i elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerq2_strided_batched()

	
rocblas_status rocsolver_zgerq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgerq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgerq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgerq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GERQ2_STRIDED_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} 0 & R_j \end{array}\right] Q_j \]

where \(R_j\) is upper triangular (upper trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}'H_{j_2}' \cdots H_{j_k}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last n-i elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerqf()

	
rocblas_status rocsolver_zgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GERQF computes a RQ factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

\[A = \left[\begin{array}{cc} 0 & R \end{array}\right] Q \]

where R is upper triangular (upper trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_1'H_2' \cdots H_k', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gerqf_batched()

	
rocblas_status rocsolver_zgerqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgerqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgerqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgerqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GERQF_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} 0 & R_j \end{array}\right] Q_j \]

where \(R_j\) is upper triangular (upper trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}'H_{j_2}' \cdots H_{j_k}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last n-i elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerqf_strided_batched()

	
rocblas_status rocsolver_zgerqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgerqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgerqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgerqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GERQF_STRIDED_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} 0 & R_j \end{array}\right] Q_j \]

where \(R_j\) is upper triangular (upper trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_1}'H_{j_2}' \cdots H_{j_k}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last n-i elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geql2()

	
rocblas_status rocsolver_zgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GEQL2 computes a QL factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

\[\begin{split} A = Q\left[\begin{array}{c} 0\\ L \end{array}\right] \end{split}\]

where L is lower triangular (lower trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_kH_{k-1}\cdots H_1, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the last m-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geql2_batched()

	
rocblas_status rocsolver_zgeql2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeql2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeql2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeql2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQL2_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} 0\\ L_j \end{array}\right] \end{split}\]

where \(L_j\) is lower triangular (lower trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_{j_k}H_{j_{k-1}}\cdots H_{j_1}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last m-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geql2_strided_batched()

	
rocblas_status rocsolver_zgeql2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeql2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeql2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeql2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQL2_STRIDED_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} 0\\ L_j \end{array}\right] \end{split}\]

where \(L_j\) is lower triangular (lower trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_{j_k}H_{j_{k-1}}\cdots H_{j_1}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last m-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqlf()

	
rocblas_status rocsolver_zgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GEQLF computes a QL factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

\[\begin{split} A = Q\left[\begin{array}{c} 0\\ L \end{array}\right] \end{split}\]

where L is lower triangular (lower trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_kH_{k-1}\cdots H_1, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i v_i' \]

where the last m-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geqlf_batched()

	
rocblas_status rocsolver_zgeqlf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqlf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqlf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqlf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQLF_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} 0\\ L_j \end{array}\right] \end{split}\]

where \(L_j\) is lower triangular (lower trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_{j_k}H_{j_{k-1}}\cdots H_{j_1}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last m-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqlf_strided_batched()

	
rocblas_status rocsolver_zgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GEQLF_STRIDED_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[\begin{split} A_j = Q_j\left[\begin{array}{c} 0\\ L_j \end{array}\right] \end{split}\]

where \(L_j\) is lower triangular (lower trapezoidal if m < n), and \(Q_j\) is a m-by-m orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_{j_k}H_{j_{k-1}}\cdots H_{j_1}, \quad \text{with} \: k = \text{min}(m,n) \]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i} v_{j_i}' \]

where the last m-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelq2()

	
rocblas_status rocsolver_zgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GELQ2 computes a LQ factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

\[A = \left[\begin{array}{cc} L & 0 \end{array}\right] Q \]

where L is lower triangular (lower trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_k'H_{k-1}' \cdots H_1', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i' v_i \]

where the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and below the diagonal contain the factor L; the elements above the diagonal are the last n - i elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gelq2_batched()

	
rocblas_status rocsolver_zgelq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgelq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgelq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgelq2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GELQ2_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} L_j & 0 \end{array}\right] Q_j \]

where \(L_j\) is lower triangular (lower trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_k}'H_{j_{k-1}}' \cdots H_{j_1}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i}' v_{j_i} \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelq2_strided_batched()

	
rocblas_status rocsolver_zgelq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgelq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgelq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgelq2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GELQ2_STRIDED_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} L_j & 0 \end{array}\right] Q_j \]

where \(L_j\) is lower triangular (lower trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_k}'H_{j_{k-1}}' \cdots H_{j_1}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i}' v_{j_i} \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelqf()

	
rocblas_status rocsolver_zgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *ipiv)

	

	
rocblas_status rocsolver_cgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *ipiv)

	

	
rocblas_status rocsolver_dgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *ipiv)

	

	
rocblas_status rocsolver_sgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *ipiv)

	GELQF computes a LQ factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

\[A = \left[\begin{array}{cc} L & 0 \end{array}\right] Q \]

where L is lower triangular (lower trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q = H_k'H_{k-1}' \cdots H_1', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{ipiv}[i] \cdot v_i' v_i \]

where the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on and below the diagonal contain the factor L; the elements above the diagonal are the last n - i elements of Householder vector v_i.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gelqf_batched()

	
rocblas_status rocsolver_zgelqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgelqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgelqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgelqf_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GELQF_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} L_j & 0 \end{array}\right] Q_j \]

where \(L_j\) is lower triangular (lower trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_k}'H_{j_{k-1}}' \cdots H_{j_1}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i}' v_{j_i} \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelqf_strided_batched()

	
rocblas_status rocsolver_zgelqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgelqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgelqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgelqf_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *ipiv, const rocblas_stride strideP, const rocblas_int batch_count)

	GELQF_STRIDED_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix \(A_j\) in the batch has the form

\[A_j = \left[\begin{array}{cc} L_j & 0 \end{array}\right] Q_j \]

where \(L_j\) is lower triangular (lower trapezoidal if m > n), and \(Q_j\) is a n-by-n orthogonal/unitary matrix represented as the product of Householder matrices

\[Q_j = H_{j_k}'H_{j_{k-1}}' \cdots H_{j_1}', \quad \text{with} \: k = \text{min}(m,n). \]

Each Householder matrices \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{ipiv}_j[i] \cdot v_{j_i}' v_{j_i} \]

where the first i-1 elements of Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.3. Problem and matrix reductions

List of reductions

	rocsolver_<type>gebd2()

	rocsolver_<type>gebd2_batched()

	rocsolver_<type>gebd2_strided_batched()

	rocsolver_<type>gebrd()

	rocsolver_<type>gebrd_batched()

	rocsolver_<type>gebrd_strided_batched()

	rocsolver_<type>sytd2()

	rocsolver_<type>sytd2_batched()

	rocsolver_<type>sytd2_strided_batched()

	rocsolver_<type>hetd2()

	rocsolver_<type>hetd2_batched()

	rocsolver_<type>hetd2_strided_batched()

	rocsolver_<type>sytrd()

	rocsolver_<type>sytrd_batched()

	rocsolver_<type>sytrd_strided_batched()

	rocsolver_<type>hetrd()

	rocsolver_<type>hetrd_batched()

	rocsolver_<type>hetrd_strided_batched()

	rocsolver_<type>sygs2()

	rocsolver_<type>sygs2_batched()

	rocsolver_<type>sygs2_strided_batched()

	rocsolver_<type>hegs2()

	rocsolver_<type>hegs2_batched()

	rocsolver_<type>hegs2_strided_batched()

	rocsolver_<type>sygst()

	rocsolver_<type>sygst_batched()

	rocsolver_<type>sygst_strided_batched()

	rocsolver_<type>hegst()

	rocsolver_<type>hegst_batched()

	rocsolver_<type>hegst_strided_batched()

rocsolver_<type>gebd2()

	
rocblas_status rocsolver_zgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_double_complex *tauq, rocblas_double_complex *taup)

	

	
rocblas_status rocsolver_cgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_float_complex *tauq, rocblas_float_complex *taup)

	

	
rocblas_status rocsolver_dgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, double *tauq, double *taup)

	

	
rocblas_status rocsolver_sgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, float *tauq, float *taup)

	GEBD2 computes the bidiagonal form of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The bidiagonal form is given by:

\[B = Q' A P \]

where B is upper bidiagonal if m >= n and lower bidiagonal if m < n, and Q and P are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_n\: \text{and} \: P = G_1G_2\cdots G_{n-1}, & \: \text{if}\: m >= n, \:\text{or}\\ Q = H_1H_2\cdots H_{m-1}\: \text{and} \: P = G_1G_2\cdots G_{m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_i\) and \(G_i\) is given by

\[\begin{split} \begin{array}{cl} H_i = I - \text{tauq}[i] \cdot v_i v_i', & \: \text{and}\\ G_i = I - \text{taup}[i] \cdot u_i' u_i. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\); while the first i elements of the Householder vector \(u_i\) are zero, and \(u_i[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_i\) are zero, and \(u_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_i, and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_i. If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_i, and the elements above the diagonal are the last n - i elements of Householder vector u_i.

	[in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

	[out] D: pointer to real type. Array on the GPU of dimension min(m,n). The diagonal elements of B.

	[out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. The off-diagonal elements of B.

	[out] tauq: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars associated with matrix Q.

	[out] taup: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars associated with matrix P.

rocsolver_<type>gebd2_batched()

	
rocblas_status rocsolver_zgebd2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tauq, const rocblas_stride strideQ, rocblas_double_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgebd2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tauq, const rocblas_stride strideQ, rocblas_float_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgebd2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tauq, const rocblas_stride strideQ, double *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgebd2_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tauq, const rocblas_stride strideQ, float *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	GEBD2_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

\[B_j = Q_j' A_j P_j \]

where \(B_j\) is upper bidiagonal if m >= n and lower bidiagonal if m < n, and \(Q_j\) and \(P_j\) are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_n}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_{n-1}}, & \: \text{if}\: m >= n, \:\text{or}\\ Q_j = H_{j_1}H_{j_2}\cdots H_{j_{m-1}}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) and \(G_{j_i}\) is given by

\[\begin{split} \begin{array}{cl} H_{j_i} = I - \text{tauq}_j[i] \cdot v_{j_i} v_{j_i}', & \: \text{and}\\ G_{j_i} = I - \text{taup}_j[i] \cdot u_{j_i}' u_{j_i}. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\); while the first i elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of B_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of B_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains the vectors tauq_j of Householder scalars associated with matrices Q_j.

	[in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1). There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

	[out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors taup_j of Householder scalars associated with matrices P_j.

	[in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebd2_strided_batched()

	
rocblas_status rocsolver_zgebd2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tauq, const rocblas_stride strideQ, rocblas_double_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgebd2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tauq, const rocblas_stride strideQ, rocblas_float_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgebd2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tauq, const rocblas_stride strideQ, double *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgebd2_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tauq, const rocblas_stride strideQ, float *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	GEBD2_STRIDED_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

\[B_j = Q_j' A_j P_j \]

where \(B_j\) is upper bidiagonal if m >= n and lower bidiagonal if m < n, and \(Q_j\) and \(P_j\) are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_n}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_{n-1}}, & \: \text{if}\: m >= n, \:\text{or}\\ Q_j = H_{j_1}H_{j_2}\cdots H_{j_{m-1}}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) and \(G_{j_i}\) is given by

\[\begin{split} \begin{array}{cl} H_{j_i} = I - \text{tauq}_j[i] \cdot v_{j_i} v_{j_i}', & \: \text{and}\\ G_{j_i} = I - \text{taup}_j[i] \cdot u_{j_i}' u_{j_i}. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\); while the first i elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of B_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of B_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains the vectors tauq_j of Householder scalars associated with matrices Q_j.

	[in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1). There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

	[out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors taup_j of Householder scalars associated with matrices P_j.

	[in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebrd()

	
rocblas_status rocsolver_zgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_double_complex *tauq, rocblas_double_complex *taup)

	

	
rocblas_status rocsolver_cgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_float_complex *tauq, rocblas_float_complex *taup)

	

	
rocblas_status rocsolver_dgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, double *tauq, double *taup)

	

	
rocblas_status rocsolver_sgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, float *tauq, float *taup)

	GEBRD computes the bidiagonal form of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The bidiagonal form is given by:

\[B = Q' A P \]

where B is upper bidiagonal if m >= n and lower bidiagonal if m < n, and Q and P are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_n\: \text{and} \: P = G_1G_2\cdots G_{n-1}, & \: \text{if}\: m >= n, \:\text{or}\\ Q = H_1H_2\cdots H_{m-1}\: \text{and} \: P = G_1G_2\cdots G_{m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_i\) and \(G_i\) is given by

\[\begin{split} \begin{array}{cl} H_i = I - \text{tauq}[i] \cdot v_i v_i', & \: \text{and}\\ G_i = I - \text{taup}[i] \cdot u_i' u_i. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\); while the first i elements of the Householder vector \(u_i\) are zero, and \(u_i[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_i\) are zero, and \(u_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_i, and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_i. If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_i, and the elements above the diagonal are the last n - i elements of Householder vector u_i.

	[in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

	[out] D: pointer to real type. Array on the GPU of dimension min(m,n). The diagonal elements of B.

	[out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. The off-diagonal elements of B.

	[out] tauq: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars associated with matrix Q.

	[out] taup: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars associated with matrix P.

rocsolver_<type>gebrd_batched()

	
rocblas_status rocsolver_zgebrd_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tauq, const rocblas_stride strideQ, rocblas_double_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgebrd_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tauq, const rocblas_stride strideQ, rocblas_float_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgebrd_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tauq, const rocblas_stride strideQ, double *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgebrd_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tauq, const rocblas_stride strideQ, float *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	GEBRD_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

\[B_j = Q_j' A_j P_j \]

where \(B_j\) is upper bidiagonal if m >= n and lower bidiagonal if m < n, and \(Q_j\) and \(P_j\) are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_n}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_{n-1}}, & \: \text{if}\: m >= n, \:\text{or}\\ Q_j = H_{j_1}H_{j_2}\cdots H_{j_{m-1}}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) and \(G_{j_i}\) is given by

\[\begin{split} \begin{array}{cl} H_{j_i} = I - \text{tauq}_j[i] \cdot v_{j_i} v_{j_i}', & \: \text{and}\\ G_{j_i} = I - \text{taup}_j[i] \cdot u_{j_i}' u_{j_i}. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\); while the first i elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of B_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of B_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains the vectors tauq_j of Householder scalars associated with matrices Q_j.

	[in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1). There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

	[out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors taup_j of Householder scalars associated with matrices P_j.

	[in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebrd_strided_batched()

	
rocblas_status rocsolver_zgebrd_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tauq, const rocblas_stride strideQ, rocblas_double_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgebrd_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tauq, const rocblas_stride strideQ, rocblas_float_complex *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgebrd_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tauq, const rocblas_stride strideQ, double *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgebrd_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tauq, const rocblas_stride strideQ, float *taup, const rocblas_stride strideP, const rocblas_int batch_count)

	GEBRD_STRIDED_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

\[B_j = Q_j' A_j P_j \]

where \(B_j\) is upper bidiagonal if m >= n and lower bidiagonal if m < n, and \(Q_j\) and \(P_j\) are orthogonal/unitary matrices represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_n}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_{n-1}}, & \: \text{if}\: m >= n, \:\text{or}\\ Q_j = H_{j_1}H_{j_2}\cdots H_{j_{m-1}}\: \text{and} \: P_j = G_{j_1}G_{j_2}\cdots G_{j_m}, & \: \text{if}\: m < n. \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) and \(G_{j_i}\) is given by

\[\begin{split} \begin{array}{cl} H_{j_i} = I - \text{tauq}_j[i] \cdot v_{j_i} v_{j_i}', & \: \text{and}\\ G_{j_i} = I - \text{taup}_j[i] \cdot u_{j_i}' u_{j_i}. \end{array} \end{split}\]

If m >= n, the first i-1 elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\); while the first i elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i+1] = 1\). If m < n, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\); while the first i-1 elements of the Householder vector \(u_{j_i}\) are zero, and \(u_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of B_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of B_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains the vectors tauq_j of Householder scalars associated with matrices Q_j.

	[in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1). There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

	[out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors taup_j of Householder scalars associated with matrices P_j.

	[in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytd2()

	
rocblas_status rocsolver_dsytd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, double *tau)

	

	
rocblas_status rocsolver_ssytd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, float *tau)

	SYTD2 computes the tridiagonal form of a real symmetric matrix A.

(This is the unblocked version of the algorithm).

The tridiagonal form is given by:

\[T = Q' A Q \]

where T is symmetric tridiagonal and Q is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_{n-1} & \: \text{if uplo indicates lower, or}\\ Q = H_{n-1}H_{n-2}\cdots H_1 & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{tau}[i] \cdot v_i v_i' \]

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_i stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] D: pointer to type. Array on the GPU of dimension n. The diagonal elements of T.

	[out] E: pointer to type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

	[out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>sytd2_batched()

	
rocblas_status rocsolver_dsytd2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytd2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	SYTD2_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is symmetric tridiagonal and \(Q_j\) is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytd2_strided_batched()

	
rocblas_status rocsolver_dsytd2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytd2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	SYTD2_STRIDED_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is symmetric tridiagonal and \(Q_j\) is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetd2()

	
rocblas_status rocsolver_zhetd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_double_complex *tau)

	

	
rocblas_status rocsolver_chetd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_float_complex *tau)

	HETD2 computes the tridiagonal form of a complex hermitian matrix A.

(This is the unblocked version of the algorithm).

The tridiagonal form is given by:

\[T = Q' A Q \]

where T is hermitian tridiagonal and Q is an unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_{n-1} & \: \text{if uplo indicates lower, or}\\ Q = H_{n-1}H_{n-2}\cdots H_1 & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{tau}[i] \cdot v_i v_i' \]

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T; the elements above the superdiagonal contain the first i-1 elements of the Householders vector v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_i stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] D: pointer to real type. Array on the GPU of dimension n. The diagonal elements of T.

	[out] E: pointer to real type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

	[out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>hetd2_batched()

	
rocblas_status rocsolver_zhetd2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chetd2_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	HETD2_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is Hermitian tridiagonal and \(Q_j\) is a unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetd2_strided_batched()

	
rocblas_status rocsolver_zhetd2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chetd2_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	HETD2_STRIDED_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is Hermitian tridiagonal and \(Q_j\) is a unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrd()

	
rocblas_status rocsolver_dsytrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, double *tau)

	

	
rocblas_status rocsolver_ssytrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, float *tau)

	SYTRD computes the tridiagonal form of a real symmetric matrix A.

(This is the blocked version of the algorithm).

The tridiagonal form is given by:

\[T = Q' A Q \]

where T is symmetric tridiagonal and Q is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_{n-1} & \: \text{if uplo indicates lower, or}\\ Q = H_{n-1}H_{n-2}\cdots H_1 & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{tau}[i] \cdot v_i v_i' \]

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_i stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] D: pointer to type. Array on the GPU of dimension n. The diagonal elements of T.

	[out] E: pointer to type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

	[out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>sytrd_batched()

	
rocblas_status rocsolver_dsytrd_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytrd_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	SYTRD_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is symmetric tridiagonal and \(Q_j\) is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrd_strided_batched()

	
rocblas_status rocsolver_dsytrd_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, double *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssytrd_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, float *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	SYTRD_STRIDED_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is symmetric tridiagonal and \(Q_j\) is an orthogonal matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetrd()

	
rocblas_status rocsolver_zhetrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_double_complex *tau)

	

	
rocblas_status rocsolver_chetrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_float_complex *tau)

	HETRD computes the tridiagonal form of a complex hermitian matrix A.

(This is the blocked version of the algorithm).

The tridiagonal form is given by:

\[T = Q' A Q \]

where T is hermitian tridiagonal and Q is an unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q = H_1H_2\cdots H_{n-1} & \: \text{if uplo indicates lower, or}\\ Q = H_{n-1}H_{n-2}\cdots H_1 & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_i\) is given by

\[H_i = I - \text{tau}[i] \cdot v_i v_i' \]

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_i\) are zero, and \(v_i[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_i\) are zero, and \(v_i[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_i stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] D: pointer to real type. Array on the GPU of dimension n. The diagonal elements of T.

	[out] E: pointer to real type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

	[out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>hetrd_batched()

	
rocblas_status rocsolver_zhetrd_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chetrd_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	HETRD_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is Hermitian tridiagonal and \(Q_j\) is a unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetrd_strided_batched()

	
rocblas_status rocsolver_zhetrd_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_double_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chetrd_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_float_complex *tau, const rocblas_stride strideP, const rocblas_int batch_count)

	HETRD_STRIDED_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of \(A_j\) is given by:

\[T_j = Q_j' A_j Q_j \]

where \(T_j\) is Hermitian tridiagonal and \(Q_j\) is a unitary matrix represented as the product of Householder matrices

\[\begin{split} \begin{array}{cl} Q_j = H_{j_1}H_{j_2}\cdots H_{j_{n-1}} & \: \text{if uplo indicates lower, or}\\ Q_j = H_{j_{n-1}}H_{j_{n-2}}\cdots H_{j_1} & \: \text{if uplo indicates upper.} \end{array} \end{split}\]

Each Householder matrix \(H_{j_i}\) is given by

\[H_{j_i} = I - \text{tau}_j[i] \cdot v_{j_i} v_{j_i}' \]

where \(\text{tau}_j[i]\) is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i+1] = 1\). If uplo indicates upper, the last n-i elements of the Householder vector \(v_{j_i}\) are zero, and \(v_{j_i}[i] = 1\).

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The diagonal elements of T_j.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The off-diagonal elements of T_j.

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

	[out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains the vectors tau_j of corresponding Householder scalars.

	[in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1). There is no restriction for the value of strideP. Normal use is strideP >= n-1.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygs2()

	
rocblas_status rocsolver_dsygs2(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_ssygs2(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb)

	SYGS2 reduces a real symmetric-definite generalized eigenproblem to standard form.

(This is the unblocked version of the algorithm).

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U^{-T} A U^{-1}, & \: \text{or}\\ L^{-1} A L^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix B has been factorized as either \(U^T U\) or \(L L^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U A U^T, & \: \text{or}\\ L^T A L, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix B, as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>sygs2_batched()

	
rocblas_status rocsolver_dsygs2_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygs2_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	SYGS2_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-T} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix \(B_i\) has been factorized as either \(U_i^T U_i\) or \(L_i L_i^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^T, & \: \text{or}\\ L_i^T A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. The triangular factors of the matrices B_i, as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygs2_strided_batched()

	
rocblas_status rocsolver_dsygs2_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygs2_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	SYGS2_STRIDED_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-T} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix \(B_i\) has been factorized as either \(U_i^T U_i\) or \(L_i L_i^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^T, & \: \text{or}\\ L_i^T A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The triangular factors of the matrices B_i, as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegs2()

	
rocblas_status rocsolver_zhegs2(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_chegs2(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb)

	HEGS2 reduces a hermitian-definite generalized eigenproblem to standard form.

(This is the unblocked version of the algorithm).

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U^{-H} A U^{-1}, & \: \text{or}\\ L^{-1} A L^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix B has been factorized as either \(U^H U\) or \(L L^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U A U^H, & \: \text{or}\\ L^H A L, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix B, as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>hegs2_batched()

	
rocblas_status rocsolver_zhegs2_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegs2_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	HEGS2_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-H} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix \(B_i\) has been factorized as either \(U_i^H U_i\) or \(L_i L_i^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^H, & \: \text{or}\\ L_i^H A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. The triangular factors of the matrices B_i, as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegs2_strided_batched()

	
rocblas_status rocsolver_zhegs2_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegs2_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	HEGS2_STRIDED_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-H} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix \(B_i\) has been factorized as either \(U_i^H U_i\) or \(L_i L_i^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^H, & \: \text{or}\\ L_i^H A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The triangular factors of the matrices B_i, as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygst()

	
rocblas_status rocsolver_dsygst(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_ssygst(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb)

	SYGST reduces a real symmetric-definite generalized eigenproblem to standard form.

(This is the blocked version of the algorithm).

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U^{-T} A U^{-1}, & \: \text{or}\\ L^{-1} A L^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix B has been factorized as either \(U^T U\) or \(L L^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U A U^T, & \: \text{or}\\ L^T A L, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix B, as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>sygst_batched()

	
rocblas_status rocsolver_dsygst_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygst_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	SYGST_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-T} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix \(B_i\) has been factorized as either \(U_i^T U_i\) or \(L_i L_i^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^T, & \: \text{or}\\ L_i^T A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. The triangular factors of the matrices B_i, as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygst_strided_batched()

	
rocblas_status rocsolver_dsygst_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygst_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	SYGST_STRIDED_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-T} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-T}, \end{array} \end{split}\]

where the symmetric-definite matrix \(B_i\) has been factorized as either \(U_i^T U_i\) or \(L_i L_i^T\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^T, & \: \text{or}\\ L_i^T A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The triangular factors of the matrices B_i, as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegst()

	
rocblas_status rocsolver_zhegst(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_chegst(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb)

	HEGST reduces a hermitian-definite generalized eigenproblem to standard form.

(This is the blocked version of the algorithm).

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U^{-H} A U^{-1}, & \: \text{or}\\ L^{-1} A L^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix B has been factorized as either \(U^H U\) or \(L L^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U A U^H, & \: \text{or}\\ L^H A L, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix B, as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>hegst_batched()

	
rocblas_status rocsolver_zhegst_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegst_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	HEGST_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-H} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix \(B_i\) has been factorized as either \(U_i^H U_i\) or \(L_i L_i^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^H, & \: \text{or}\\ L_i^H A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. The triangular factors of the matrices B_i, as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegst_strided_batched()

	
rocblas_status rocsolver_zhegst_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegst_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	HEGST_STRIDED_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype.

If the problem is of the 1st form, then \(A_i\) is overwritten with

\[\begin{split} \begin{array}{cl} U_i^{-H} A_i U_i^{-1}, & \: \text{or}\\ L_i^{-1} A_i L_i^{-H}, \end{array} \end{split}\]

where the hermitian-definite matrix \(B_i\) has been factorized as either \(U_i^H U_i\) or \(L_i L_i^H\) as returned by POTRF, depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

\[\begin{split} \begin{array}{cl} U_i A_i U_i^H, & \: \text{or}\\ L_i^H A_i L_i, \end{array} \end{split}\]

also depending on the value of uplo.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored, and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue problems.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The triangular factors of the matrices B_i, as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.4. Linear-systems solvers

List of linear solvers

	rocsolver_<type>trtri()

	rocsolver_<type>trtri_batched()

	rocsolver_<type>trtri_strided_batched()

	rocsolver_<type>getri()

	rocsolver_<type>getri_batched()

	rocsolver_<type>getri_strided_batched()

	rocsolver_<type>getrs()

	rocsolver_<type>getrs_batched()

	rocsolver_<type>getrs_strided_batched()

	rocsolver_<type>gesv()

	rocsolver_<type>gesv_batched()

	rocsolver_<type>gesv_strided_batched()

	rocsolver_<type>potri()

	rocsolver_<type>potri_batched()

	rocsolver_<type>potri_strided_batched()

	rocsolver_<type>potrs()

	rocsolver_<type>potrs_batched()

	rocsolver_<type>potrs_strided_batched()

	rocsolver_<type>posv()

	rocsolver_<type>posv_batched()

	rocsolver_<type>posv_strided_batched()

rocsolver_<type>trtri()

	
rocblas_status rocsolver_ztrtri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_ctrtri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dtrtri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_strtri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	TRTRI inverts a triangular n-by-n matrix A.

A can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending on the value of diag.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of A are not referenced and assumed to be one.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the triangular matrix. On exit, the inverse of A if info = 0.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, A is singular. A[i,i] is the first zero element in the diagonal.

rocsolver_<type>trtri_batched()

	
rocblas_status rocsolver_ztrtri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ctrtri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dtrtri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_strtri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	TRTRI_BATCHED inverts a batch of triangular n-by-n matrices \(A_j\).

\(A_j\) can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending on the value of diag.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_j are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of matrices A_j are not referenced and assumed to be one.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the triangular matrices A_j. On exit, the inverses of A_j if info[j] = 0.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, A_j is singular. A_j[i,i] is the first zero element in the diagonal.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>trtri_strided_batched()

	
rocblas_status rocsolver_ztrtri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ctrtri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dtrtri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_strtri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_diagonal diag, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	TRTRI_STRIDED_BATCHED inverts a batch of triangular n-by-n matrices \(A_j\).

\(A_j\) can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending on the value of diag.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_j are stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of matrices A_j are not referenced and assumed to be one.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the triangular matrices A_j. On exit, the inverses of A_j if info[j] = 0.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, A_j is singular. A_j[i,i] is the first zero element in the diagonal.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri()

	
rocblas_status rocsolver_zgetri(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetri(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetri(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetri(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

	GETRI inverts a general n-by-n matrix A using the LU factorization computed by GETRF.

The inverse is computed by solving the linear system

\[A^{-1}L = U^{-1} \]

where L is the lower triangular factor of A with unit diagonal elements, and U is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factors L and U of the factorization A = P*L*U returned by

GETRF. On exit, the inverse of A if info = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned by

GETRF.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_batched()

	
rocblas_status rocsolver_zgetri_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_batched(rocblas_handle handle, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_batched(rocblas_handle handle, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETRI_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by GETRF_BATCHED.

The inverse of matrix \(A_j\) in the batch is computed by solving the linear system

\[A_j^{-1} L_j = U_j^{-1} \]

where \(L_j\) is the lower triangular factor of \(A_j\) with unit diagonal elements, and \(U_j\) is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the factors L_j and U_j of the factorization A = P_j*L_j*U_j returned by

GETRF_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The pivot indices returned by

GETRF_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(i+j). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_strided_batched()

	
rocblas_status rocsolver_zgetri_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_strided_batched(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_strided_batched(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_int *info, const rocblas_int batch_count)

	GETRI_STRIDED_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by GETRF_STRIDED_BATCHED.

The inverse of matrix \(A_j\) in the batch is computed by solving the linear system

\[A_j^{-1} L_j = U_j^{-1} \]

where \(L_j\) is the lower triangular factor of \(A_j\) with unit diagonal elements, and \(U_j\) is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by

GETRF_STRIDED_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The pivot indices returned by

GETRF_STRIDED_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrs()

	
rocblas_status rocsolver_zgetrs(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_int *ipiv, rocblas_double_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_cgetrs(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_int *ipiv, rocblas_float_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_dgetrs(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_int *ipiv, double *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_sgetrs(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_int *ipiv, float *B, const rocblas_int ldb)

	GETRS solves a system of n linear equations on n variables in its factorized form.

It solves one of the following systems, depending on the value of trans:

\[\begin{split} \begin{array}{cl} A X = B & \: \text{not transposed,}\\ A^T X = B & \: \text{transposed, or}\\ A^H X = B & \: \text{conjugate transposed.} \end{array} \end{split}\]

Matrix A is defined by its triangular factors as returned by GETRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of the matrix B.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factorization A = P*L*U returned by

GETRF.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned by

GETRF.

	[inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrix B. On exit, the solution matrix X.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

rocsolver_<type>getrs_batched()

	
rocblas_status rocsolver_zgetrs_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *const A[], const rocblas_int lda, const rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrs_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *const A[], const rocblas_int lda, const rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrs_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, double *const A[], const rocblas_int lda, const rocblas_int *ipiv, const rocblas_stride strideP, double *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrs_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, float *const A[], const rocblas_int lda, const rocblas_int *ipiv, const rocblas_stride strideP, float *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	GETRS_BATCHED solves a batch of systems of n linear equations on n variables in its factorized forms.

For each instance j in the batch, it solves one of the following systems, depending on the value of trans:

\[\begin{split} \begin{array}{cl} A_j X_j = B_j & \: \text{not transposed,}\\ A_j^T X_j = B_j & \: \text{transposed, or}\\ A_j^H X_j = B_j & \: \text{conjugate transposed.} \end{array} \end{split}\]

Matrix \(A_j\) is defined by its triangular factors as returned by GETRF_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations of each instance in the batch.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by

GETRF_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of pivot indices returned by

GETRF_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>getrs_strided_batched()

	
rocblas_status rocsolver_zgetrs_strided_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, const rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrs_strided_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, const rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrs_strided_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_stride strideA, const rocblas_int *ipiv, const rocblas_stride strideP, double *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrs_strided_batched(rocblas_handle handle, const rocblas_operation trans, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_stride strideA, const rocblas_int *ipiv, const rocblas_stride strideP, float *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	GETRS_STRIDED_BATCHED solves a batch of systems of n linear equations on n variables in its factorized forms.

For each instance j in the batch, it solves one of the following systems, depending on the value of trans:

\[\begin{split} \begin{array}{cl} A_j X_j = B_j & \: \text{not transposed,}\\ A_j^T X_j = B_j & \: \text{transposed, or}\\ A_j^H X_j = B_j & \: \text{conjugate transposed.} \end{array} \end{split}\]

Matrix \(A_j\) is defined by its triangular factors as returned by GETRF_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations of each instance in the batch.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by

GETRF_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). Contains the vectors ipiv_j of pivot indices returned by

GETRF_STRIDED_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>gesv()

	
rocblas_status rocsolver_zgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_double_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_cgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_float_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_dgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, rocblas_int *ipiv, double *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_sgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, rocblas_int *ipiv, float *B, const rocblas_int ldb, rocblas_int *info)

	GESV solves a general system of n linear equations on n variables.

The linear system is of the form

\[A X = B \]

where A is a general n-by-n matrix. Matrix A is first factorized in triangular factors L and U using GETRF; then, the solution is computed with GETRS.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of the matrix B.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, if info = 0, the factors L and U of the LU decomposition of A returned by

GETRF.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned by

GETRF.

	[inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrix B. On exit, the solution matrix X.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is singular, and the solution could not be computed. U[i,i] is the first zero element in the diagonal.

rocsolver_<type>gesv_batched()

	
rocblas_status rocsolver_zgesv_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgesv_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgesv_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, double *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgesv_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, float *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	GESV_BATCHED solves a batch of general systems of n linear equations on n variables.

The linear systems are of the form

\[A_j X_j = B_j \]

where \(A_j\) is a general n-by-n matrix. Matrix \(A_j\) is first factorized in triangular factors \(L_j\) and \(U_j\) using GETRF_BATCHED; then, the solutions are computed with GETRS_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, if info_j = 0, the factors L_j and U_j of the LU decomposition of A_j returned by

GETRF_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The vectors ipiv_j of pivot indices returned by

GETRF_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for A_j. If info[i] = j > 0, U_i is singular, and the solution could not be computed. U_j[i,i] is the first zero element in the diagonal.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>gesv_strided_batched()

	
rocblas_status rocsolver_zgesv_strided_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgesv_strided_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgesv_strided_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, double *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgesv_strided_batched(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, float *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	GESV_STRIDED_BATCHED solves a batch of general systems of n linear equations on n variables.

The linear systems are of the form

\[A_j X_j = B_j \]

where \(A_j\) is a general n-by-n matrix. Matrix \(A_j\) is first factorized in triangular factors \(L_j\) and \(U_j\) using GETRF_STRIDED_BATCHED; then, the solutions are computed with GETRS_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, if info_j = 0, the factors L_j and U_j of the LU decomposition of A_j returned by

GETRF_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The vectors ipiv_j of pivot indices returned by

GETRF_STRIDED_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for A_j. If info[i] = j > 0, U_i is singular, and the solution could not be computed. U_j[i,i] is the first zero element in the diagonal.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>potri()

	
rocblas_status rocsolver_zpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_spotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	POTRI inverts a symmetric/hermitian positive definite matrix A.

The inverse of matrix \(A\) is computed as

\[\begin{split} \begin{array}{cl} A^{-1} = U^{-1} {U^{-1}}' & \: \text{if uplo is upper, or}\\ A^{-1} = {L^{-1}}' L^{-1} & \: \text{if uplo is lower.} \end{array} \end{split}\]

where \(U\) or \(L\) is the triangular factor of the Cholesky factorization of \(A\) returned by POTRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factor L or U of the Cholesky factorization of A returned by

POTRF. On exit, the inverses of A if info = 0.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit for inversion of A. If info = j > 0, A is singular. L[j,j] or U[j,j] is zero.

rocsolver_<type>potri_batched()

	
rocblas_status rocsolver_zpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotri_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	POTRI_BATCHED inverts a batch of symmetric/hermitian positive definite matrices \(A_i\).

The inverse of matrix \(A_i\) in the batch is computed as

\[\begin{split} \begin{array}{cl} A_i^{-1} = U_i^{-1} {U_i^{-1}}' & \: \text{if uplo is upper, or}\\ A_i^{-1} = {L_i^{-1}}' L_i^{-1} & \: \text{if uplo is lower.} \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is the triangular factor of the Cholesky factorization of \(A_i\) returned by POTRF_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the factor L_i or U_i of the Cholesky factorization of A_i returned by

POTRF_BATCHED. On exit, the inverses of A_i if info[i] = 0.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for inversion of A_i. If info[i] = j > 0, A_i is singular. L_i[j,j] or U_i[j,j] is zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potri_strided_batched()

	
rocblas_status rocsolver_zpotri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotri_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	POTRI_STRIDED_BATCHED inverts a batch of symmetric/hermitian positive definite matrices \(A_i\).

The inverse of matrix \(A_i\) in the batch is computed as

\[\begin{split} \begin{array}{cl} A_i^{-1} = U_i^{-1} {U_i^{-1}}' & \: \text{if uplo is upper, or}\\ A_i^{-1} = {L_i^{-1}}' L_i^{-1} & \: \text{if uplo is lower.} \end{array} \end{split}\]

where \(U_i\) or \(L_i\) is the triangular factor of the Cholesky factorization of \(A_i\) returned by POTRF_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the factor L_i or U_i of the Cholesky factorization of A_i returned by

POTRF_STRIDED_BATCHED. On exit, the inverses of A_i if info[i] = 0.

	[in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for inversion of A_i. If info[i] = j > 0, A_i is singular. L_i[j,j] or U_i[j,j] is zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potrs()

	
rocblas_status rocsolver_zpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_cpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_dpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, double *B, const rocblas_int ldb)

	

	
rocblas_status rocsolver_spotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, float *B, const rocblas_int ldb)

	POTRS solves a symmetric/hermitian system of n linear equations on n variables in its factorized form.

It solves the system

\[A X = B \]

where A is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

\[\begin{split} \begin{array}{cl} A = U'U & \: \text{if uplo is upper, or}\\ A = LL' & \: \text{if uplo is lower.} \end{array} \end{split}\]

as returned by POTRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of the matrix B.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. The factor L or U of the Cholesky factorization of A returned by

POTRF.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrix B. On exit, the solution matrix X.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

rocsolver_<type>potrs_batched()

	
rocblas_status rocsolver_zpotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, const rocblas_int batch_count)

	POTRS_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables in its factorized forms.

For each instance j in the batch, it solves the system

\[A_j X_j = B_j \]

where \(A_j\) is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

\[\begin{split} \begin{array}{cl} A_j = U_j'U_j & \: \text{if uplo is upper, or}\\ A_j = L_jL_j' & \: \text{if uplo is lower.} \end{array} \end{split}\]

as returned by POTRF_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. The factor L_j or U_j of the Cholesky factorization of A_j returned by

POTRF_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>potrs_strided_batched()

	
rocblas_status rocsolver_zpotrs_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cpotrs_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dpotrs_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_spotrs_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, const rocblas_int batch_count)

	POTRS_STRIDED_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables in its factorized forms.

For each instance j in the batch, it solves the system

\[A_j X_j = B_j \]

where \(A_j\) is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

\[\begin{split} \begin{array}{cl} A_j = U_j'U_j & \: \text{if uplo is upper, or}\\ A_j = L_jL_j' & \: \text{if uplo is lower.} \end{array} \end{split}\]

as returned by POTRF_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factor L_j or U_j of the Cholesky factorization of A_j returned by

POTRF_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>posv()

	
rocblas_status rocsolver_zposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_cposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_dposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, double *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_sposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, float *B, const rocblas_int ldb, rocblas_int *info)

	POSV solves a symmetric/hermitian system of n linear equations on n variables.

It solves the system

\[A X = B \]

where A is a real symmetric (complex hermitian) positive definite matrix. Matrix A is first factorized as \(A=LL'\) or \(A=U'U\), depending on the value of uplo, using POTRF; then, the solution is computed with POTRS.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of the matrix B.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric/hermitian matrix A. On exit, if info = 0, the factor L or U of the Cholesky factorization of A returned by

POTRF.

	[in] lda: rocblas_int. lda >= n. The leading dimension of A.

	[inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrix B. On exit, the solution matrix X.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, the leading minor of order j of A is not positive definite. The solution could not be computed.

rocsolver_<type>posv_batched()

	
rocblas_status rocsolver_zposv_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cposv_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dposv_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sposv_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	POSV_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables.

For each instance j in the batch, it solves the system

\[A_j X_j = B_j \]

where \(A_j\) is a real symmetric (complex hermitian) positive definite matrix. Matrix \(A_j\) is first factorized as \(A_j=L_jL_j'\) or \(A_j=U_j'U_j\), depending on the value of uplo, using POTRF_BATCHED; then, the solution is computed with POTRS_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the symmetric/hermitian matrices A_j. On exit, if info[j] = 0, the factor L_j or U_j of the Cholesky factorization of A_j returned by

POTRF_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0, the leading minor of order i of A_j is not positive definite. The j-th solution could not be computed.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>posv_strided_batched()

	
rocblas_status rocsolver_zposv_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cposv_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dposv_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sposv_strided_batched(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	POSV_STRIDED_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables.

For each instance j in the batch, it solves the system

\[A_j X_j = B_j \]

where \(A_j\) is a real symmetric (complex hermitian) positive definite matrix. Matrix \(A_j\) is first factorized as \(A_j=L_jL_j'\) or \(A_j=U_j'U_j\), depending on the value of uplo, using POTRF_STRIDED_BATCHED; then, the solution is computed with POTRS_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all A_j matrices.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of all the matrices B_j.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the symmetric/hermitian matrices A_j. On exit, if info[j] = 0, the factor L_j or U_j of the Cholesky factorization of A_j returned by

POTRF_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

	[in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0, the leading minor of order i of A_j is not positive definite. The j-th solution could not be computed.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

3.3.5. Least-squares solvers

List of least-squares solvers

	rocsolver_<type>gels()

	rocsolver_<type>gels_batched()

	rocsolver_<type>gels_strided_batched()

rocsolver_<type>gels()

	
rocblas_status rocsolver_zgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_cgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_dgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, double *B, const rocblas_int ldb, rocblas_int *info)

	

	
rocblas_status rocsolver_sgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, float *B, const rocblas_int ldb, rocblas_int *info)

	GELS solves an overdetermined (or underdetermined) linear system defined by an m-by-n matrix A, and a corresponding matrix B, using the QR factorization computed by GEQRF (or the LQ factorization computed by GELQF).

Depending on the value of trans, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = B & \: \text{not transposed, or}\\ A' X = B & \: \text{transposed if real, or conjugate transposed if complex} \end{array} \end{split}\]

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-squares solution approximating X is found by minimizing

\[|| B - A X || \quad \text{(or} \: || B - A' X ||\text{)} \]

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique solution for X is chosen such that \(|| X ||\) is minimal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations.

	[in] m: rocblas_int. m >= 0. The number of rows of matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of matrix A.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of columns of matrices B and X; i.e., the columns on the right hand side.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the QR (or LQ) factorization of A as returned by

GEQRF (or GELQF).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrix A.

	[inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the matrix B. On exit, when info = 0, B is overwritten by the solution vectors (and the residuals in the overdetermined cases) stored as columns.

	[in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrix B.

	[out] info: pointer to rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, the solution could not be computed because input matrix A is rank deficient; the j-th diagonal element of its triangular factor is zero.

rocsolver_<type>gels_batched()

	
rocblas_status rocsolver_zgels_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgels_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgels_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgels_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, rocblas_int *info, const rocblas_int batch_count)

	GELS_BATCHED solves a batch of overdetermined (or underdetermined) linear systems defined by a set of m-by-n matrices \(A_i\), and corresponding matrices \(B_i\), using the QR factorizations computed by GEQRF_BATCHED (or the LQ factorizations computed by GELQF_BATCHED).

For each instance in the batch, depending on the value of trans, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = B_i & \: \text{not transposed, or}\\ A_i' X_i = B_i & \: \text{transposed if real, or conjugate transposed if complex} \end{array} \end{split}\]

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-squares solution approximating X_i is found by minimizing

\[|| B_i - A_i X_i || \quad \text{(or} \: || B_i - A_i' X_i ||\text{)} \]

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique solution for X_i is chosen such that \(|| X_i ||\) is minimal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of columns of all matrices B_i and X_i in the batch; i.e., the columns on the right hand side.

	[inout] A: array of pointer to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_i. On exit, the QR (or LQ) factorizations of A_i as returned by

GEQRF_BATCHED (or GELQF_BATCHED).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[inout] B: array of pointer to type. Each pointer points to an array on the GPU of dimension ldb*nrhs. On entry, the matrices B_i. On exit, when info[i] = 0, B_i is overwritten by the solution vectors (and the residuals in the overdetermined cases) stored as columns.

	[in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrices B_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for solution of A_i. If info[i] = j > 0, the solution of A_i could not be computed because input matrix A_i is rank deficient; the j-th diagonal element of its triangular factor is zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gels_strided_batched()

	
rocblas_status rocsolver_zgels_strided_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgels_strided_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgels_strided_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgels_strided_batched(rocblas_handle handle, rocblas_operation trans, const rocblas_int m, const rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, rocblas_int *info, const rocblas_int batch_count)

	GELS_STRIDED_BATCHED solves a batch of overdetermined (or underdetermined) linear systems defined by a set of m-by-n matrices \(A_i\), and corresponding matrices \(B_i\), using the QR factorizations computed by GEQRF_STRIDED_BATCHED (or the LQ factorizations computed by GELQF_STRIDED_BATCHED).

For each instance in the batch, depending on the value of trans, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = B_i & \: \text{not transposed, or}\\ A_i' X_i = B_i & \: \text{transposed if real, or conjugate transposed if complex} \end{array} \end{split}\]

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-squares solution approximating X_i is found by minimizing

\[|| B_i - A_i X_i || \quad \text{(or} \: || B_i - A_i' X_i ||\text{)} \]

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique solution for X_i is chosen such that \(|| X_i ||\) is minimal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] trans: rocblas_operation. Specifies the form of the system of equations.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[in] nrhs: rocblas_int. nrhs >= 0. The number of columns of all matrices B_i and X_i in the batch; i.e., the columns on the right hand side.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_i. On exit, the QR (or LQ) factorizations of A_i as returned by

GEQRF_STRIDED_BATCHED (or GELQF_STRIDED_BATCHED).

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[inout] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry, the matrices B_i. On exit, when info = 0, each B_i is overwritten by the solution vectors (and the residuals in the overdetermined cases) stored as columns.

	[in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrices B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for solution of A_i. If info[i] = j > 0, the solution of A_i could not be computed because input matrix A_i is rank deficient; the j-th diagonal element of its triangular factor is zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.6. Symmetric eigensolvers

List of symmetric eigensolvers

	rocsolver_<type>syev()

	rocsolver_<type>syev_batched()

	rocsolver_<type>syev_strided_batched()

	rocsolver_<type>heev()

	rocsolver_<type>heev_batched()

	rocsolver_<type>heev_strided_batched()

	rocsolver_<type>syevd()

	rocsolver_<type>syevd_batched()

	rocsolver_<type>syevd_strided_batched()

	rocsolver_<type>heevd()

	rocsolver_<type>heevd_batched()

	rocsolver_<type>heevd_strided_batched()

	rocsolver_<type>sygv()

	rocsolver_<type>sygv_batched()

	rocsolver_<type>sygv_strided_batched()

	rocsolver_<type>hegv()

	rocsolver_<type>hegv_batched()

	rocsolver_<type>hegv_strided_batched()

	rocsolver_<type>sygvd()

	rocsolver_<type>sygvd_batched()

	rocsolver_<type>sygvd_strided_batched()

	rocsolver_<type>hegvd()

	rocsolver_<type>hegvd_batched()

	rocsolver_<type>hegvd_strided_batched()

rocsolver_<type>syev()

	
rocblas_status rocsolver_dsyev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_ssyev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, rocblas_int *info)

	SYEV computes the eigenvalues and optionally the eigenvectors of a real symmetric matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of A are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

	[out] D: pointer to type. Array on the GPU of dimension n. The eigenvalues of A in increasing order.

	[out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, the algorithm did not converge. i elements of E did not converge to zero.

rocsolver_<type>syev_batched()

	
rocblas_status rocsolver_dsyev_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssyev_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYEV_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>syev_strided_batched()

	
rocblas_status rocsolver_dsyev_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssyev_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYEV_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heev()

	
rocblas_status rocsolver_zheev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_cheev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_int *info)

	HEEV computes the eigenvalues and optionally the eigenvectors of a Hermitian matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of A are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

	[out] D: pointer to real type. Array on the GPU of dimension n. The eigenvalues of A in increasing order.

	[out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, the algorithm did not converge. i elements of E did not converge to zero.

rocsolver_<type>heev_batched()

	
rocblas_status rocsolver_zheev_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cheev_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEEV_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heev_strided_batched()

	
rocblas_status rocsolver_zheev_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cheev_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEEV_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>syevd()

	
rocblas_status rocsolver_dsyevd(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_ssyevd(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *D, float *E, rocblas_int *info)

	SYEVD computes the eigenvalues and optionally the eigenvectors of a real symmetric matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of A are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

	[out] D: pointer to type. Array on the GPU of dimension n. The eigenvalues of A in increasing order.

	[out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E did not converge to zero. If info = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

rocsolver_<type>syevd_batched()

	
rocblas_status rocsolver_dsyevd_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssyevd_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYEVD_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>syevd_strided_batched()

	
rocblas_status rocsolver_dsyevd_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssyevd_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYEVD_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heevd()

	
rocblas_status rocsolver_zheevd(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_cheevd(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *D, float *E, rocblas_int *info)

	HEEVD computes the eigenvalues and optionally the eigenvectors of a Hermitian matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrix A is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of A are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

	[out] D: pointer to real type. Array on the GPU of dimension n. The eigenvalues of A in increasing order.

	[out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E did not converge to zero. If info = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

rocsolver_<type>heevd_batched()

	
rocblas_status rocsolver_zheevd_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cheevd_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEEVD_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heevd_strided_batched()

	
rocblas_status rocsolver_zheevd_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cheevd_strided_batched(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEEVD_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

	[in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged; otherwise the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The eigenvalues of A_j in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1). There is no restriction for the value of strideD. Normal use case is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygv()

	
rocblas_status rocsolver_dsygv(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *B, const rocblas_int ldb, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_ssygv(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb, float *D, float *E, rocblas_int *info)

	SYGV computes the eigenvalues and (optionally) eigenvectors of a real generalized symmetric-definite eigenproblem.

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z^T B Z=I & \: \text{if 1st or 2nd form, or}\\ Z^T B^{-1} Z=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the symmetric positive definite matrix B. On exit, the triangular factor of B as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

	[out] D: pointer to type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing order.

	[out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = n + j, the leading minor of order j of B is not positive definite.

rocsolver_<type>sygv_batched()

	
rocblas_status rocsolver_dsygv_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygv_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYGV_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^T B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^T B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, E_i contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch instance i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygv_strided_batched()

	
rocblas_status rocsolver_dsygv_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygv_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYGV_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^T B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^T B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegv()

	
rocblas_status rocsolver_zhegv(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_chegv(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb, float *D, float *E, rocblas_int *info)

	HEGV computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite eigenproblem.

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z^H B Z=I & \: \text{if 1st or 2nd form, or}\\ Z^H B^{-1} Z=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the hermitian matrix A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the hermitian positive definite matrix B. On exit, the triangular factor of B as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

	[out] D: pointer to real type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing order.

	[out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = n + j, the leading minor of order j of B is not positive definite.

rocsolver_<type>hegv_batched()

	
rocblas_status rocsolver_zhegv_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegv_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEGV_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^H B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^H B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegv_strided_batched()

	
rocblas_status rocsolver_zhegv_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegv_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEGV_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^H B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^H B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygvd()

	
rocblas_status rocsolver_dsygvd(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, double *B, const rocblas_int ldb, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_ssygvd(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb, float *D, float *E, rocblas_int *info)

	SYGVD computes the eigenvalues and (optionally) eigenvectors of a real generalized symmetric-definite eigenproblem.

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z^T B Z=I & \: \text{if 1st or 2nd form, or}\\ Z^T B^{-1} Z=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the symmetric positive definite matrix B. On exit, the triangular factor of B as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

	[out] D: pointer to type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing order.

	[out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info = n + j, the leading minor of order j of B is not positive definite.

rocsolver_<type>sygvd_batched()

	
rocblas_status rocsolver_dsygvd_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *const A[], const rocblas_int lda, double *const B[], const rocblas_int ldb, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygvd_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *const A[], const rocblas_int lda, float *const B[], const rocblas_int ldb, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYGVD_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^T B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^T B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygvd_strided_batched()

	
rocblas_status rocsolver_dsygvd_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *B, const rocblas_int ldb, const rocblas_stride strideB, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_ssygvd_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *B, const rocblas_int ldb, const rocblas_stride strideB, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	SYGVD_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^T B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^T B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

	[out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegvd()

	
rocblas_status rocsolver_zhegvd(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb, double *D, double *E, rocblas_int *info)

	

	
rocblas_status rocsolver_chegvd(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb, float *D, float *E, rocblas_int *info)

	HEGVD computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite eigenproblem.

The problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\\ A B X = \lambda X & \: \text{2nd form, or}\\ B A X = \lambda X & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z^H B Z=I & \: \text{if 1st or 2nd form, or}\\ Z^H B^{-1} Z=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the hermitian matrix A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the hermitian positive definite matrix B. On exit, the triangular factor of B as returned by

POTRF.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

	[out] D: pointer to real type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing order.

	[out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info = n + j, the leading minor of order j of B is not positive definite.

rocsolver_<type>hegvd_batched()

	
rocblas_status rocsolver_zhegvd_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const B[], const rocblas_int ldb, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegvd_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const B[], const rocblas_int ldb, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEGVD_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^H B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^H B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n. On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegvd_strided_batched()

	
rocblas_status rocsolver_zhegvd_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *B, const rocblas_int ldb, const rocblas_stride strideB, double *D, const rocblas_stride strideD, double *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_chegvd_strided_batched(rocblas_handle handle, const rocblas_eform itype, const rocblas_evect evect, const rocblas_fill uplo, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *B, const rocblas_int ldb, const rocblas_stride strideB, float *D, const rocblas_stride strideD, float *E, const rocblas_stride strideE, rocblas_int *info, const rocblas_int batch_count)

	HEGVD_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

\[\begin{split} \begin{array}{cl} A_i X_i = \lambda B_i X_i & \: \text{1st form,}\\ A_i B_i X_i = \lambda X_i & \: \text{2nd form, or}\\ B_i A_i X_i = \lambda X_i & \: \text{3rd form,} \end{array} \end{split}\]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix \(Z_i\) of eigenvectors is normalized as follows:

\[\begin{split} \begin{array}{cl} Z_i^H B_i Z_i=I & \: \text{if 1st or 2nd form, or}\\ Z_i^H B_i^{-1} Z_i=I & \: \text{if 3rd form.} \end{array} \end{split}\]

	Parameters
	
	[in] handle: rocblas_handle.

	[in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

	[in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.

	[in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

	[in] n: rocblas_int. n >= 0. The matrix dimensions.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are destroyed, depending on the value of uplo.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

	[out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by

POTRF_STRIDED_BATCHED.

	[in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

	[in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1). There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

	[out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit, the eigenvalues in increasing order.

	[in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1). There is no restriction for the value of strideD. Normal use is strideD >= n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1). There is no restriction for the value of strideE. Normal use is strideE >= n.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive definite.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.7. Singular value decomposition

List of SVD related functions

	rocsolver_<type>gesvd()

	rocsolver_<type>gesvd_batched()

	rocsolver_<type>gesvd_strided_batched()

rocsolver_<type>gesvd()

	
rocblas_status rocsolver_zgesvd(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, double *S, rocblas_double_complex *U, const rocblas_int ldu, rocblas_double_complex *V, const rocblas_int ldv, double *E, const rocblas_workmode fast_alg, rocblas_int *info)

	

	
rocblas_status rocsolver_cgesvd(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, float *S, rocblas_float_complex *U, const rocblas_int ldu, rocblas_float_complex *V, const rocblas_int ldv, float *E, const rocblas_workmode fast_alg, rocblas_int *info)

	

	
rocblas_status rocsolver_dgesvd(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, double *S, double *U, const rocblas_int ldu, double *V, const rocblas_int ldv, double *E, const rocblas_workmode fast_alg, rocblas_int *info)

	

	
rocblas_status rocsolver_sgesvd(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, float *S, float *U, const rocblas_int ldu, float *V, const rocblas_int ldv, float *E, const rocblas_workmode fast_alg, rocblas_int *info)

	GESVD computes the singular values and optionally the singular vectors of a general m-by-n matrix A (Singular Value Decomposition).

The SVD of matrix A is given by:

\[A = U S V' \]

where the m-by-n matrix S is zero except, possibly, for its min(m,n) diagonal elements, which are the singular values of A. U and V are orthogonal (unitary) matrices. The first min(m,n) columns of U and V are the left and right singular vectors of A, respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of the right singular vectors, i.e. the rows of V’.

left_svect and right_svect are rocblas_svect enums that can take the following values:

	rocblas_svect_all: the entire matrix U (or V’) is computed,

	rocblas_svect_singular: only the singular vectors (first min(m,n) columns of U or rows of V’) are computed,

	rocblas_svect_overwrite: the first columns (or rows) of A are overwritten with the singular vectors, or

	rocblas_svect_none: no columns (or rows) of U (or V’) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of A are destroyed by the time the function returns.

	Note
	When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix A via a QR (or LQ) factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also requested, its computation could be sped up as well via executing some intermediate operations out-of-place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details, see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

	[in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

	[in] m: rocblas_int. m >= 0. The number of rows of matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, if left_svect (or right_svect) is equal to overwrite, the first columns (or rows) contain the left (or right) singular vectors; otherwise, the contents of A are destroyed.

	[in] lda: rocblas_int. lda >= m. The leading dimension of A.

	[out] S: pointer to real type. Array on the GPU of dimension min(m,n). The singular values of A in decreasing order.

	[out] U: pointer to type. Array on the GPU of dimension ldu*min(m,n) if left_svect is set to singular, or ldu*m when left_svect is equal to all. The matrix of left singular vectors stored as columns. Not referenced if left_svect is set to overwrite or none.

	[in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading dimension of U.

	[out] V: pointer to type. Array on the GPU of dimension ldv*n. The matrix of right singular vectors stored as rows (transposed / conjugate-transposed). Not referenced if right_svect is set to overwrite or none.

	[in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular; or ldv >= 1 otherwise. The leading dimension of V.

	[out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. This array is used to work internally with the bidiagonal matrix B associated with A (using

BDSQR). On exit, if info > 0, it contains the unconverged off-diagonal elements of B (or properly speaking, a bidiagonal matrix orthogonally equivalent to B). The diagonal elements of this matrix are in S; those that converged correspond to a subset of the singular values of A (not necessarily ordered).

	[in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the fast thin-SVD version of the algorithm when possible.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0,

BDSQR did not converge. i elements of E did not converge to zero.

rocsolver_<type>gesvd_batched()

	
rocblas_status rocsolver_zgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, double *S, const rocblas_stride strideS, rocblas_double_complex *U, const rocblas_int ldu, const rocblas_stride strideU, rocblas_double_complex *V, const rocblas_int ldv, const rocblas_stride strideV, double *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, float *S, const rocblas_stride strideS, rocblas_float_complex *U, const rocblas_int ldu, const rocblas_stride strideU, rocblas_float_complex *V, const rocblas_int ldv, const rocblas_stride strideV, float *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, double *S, const rocblas_stride strideS, double *U, const rocblas_int ldu, const rocblas_stride strideU, double *V, const rocblas_int ldv, const rocblas_stride strideV, double *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, float *S, const rocblas_stride strideS, float *U, const rocblas_int ldu, const rocblas_stride strideU, float *V, const rocblas_int ldv, const rocblas_stride strideV, float *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	GESVD_BATCHED computes the singular values and optionally the singular vectors of a batch of general m-by-n matrix A (Singular Value Decomposition).

The SVD of matrix A_j in the batch is given by:

\[A_j = U_j S_j V_j' \]

where the m-by-n matrix \(S_j\) is zero except, possibly, for its min(m,n) diagonal elements, which are the singular values of \(A_j\). \(U_j\) and \(V_j\) are orthogonal (unitary) matrices. The first min(m,n) columns of \(U_j\) and \(V_j\) are the left and right singular vectors of \(A_j\), respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of the right singular vectors, i.e. the rows of \(V_j'\).

left_svect and right_svect are rocblas_svect enums that can take the following values:

	rocblas_svect_all: the entire matrix \(U_j\) (or \(V_j'\)) is computed,

	rocblas_svect_singular: only the singular vectors (first min(m,n) columns of \(U_j\) or rows of \(V_j'\)) are computed,

	rocblas_svect_overwrite: the first columns (or rows) of \(A_j\) are overwritten with the singular vectors, or

	rocblas_svect_none: no columns (or rows) of \(U_j\) (or \(V_j'\)) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of \(A_j\) are destroyed by the time the function returns.

	Note
	When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix \(A_j\) via a QR (or LQ) factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also requested, its computation could be sped up as well via executing some intermediate operations out-of-place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details, see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

	[in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_j in the batch.

	[inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the matrices A_j. On exit, if left_svect (or right_svect) is equal to overwrite, the first columns (or rows) of A_j contain the left (or right) corresponding singular vectors; otherwise, the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= m. The leading dimension of A_j.

	[out] S: pointer to real type. Array on the GPU (the size depends on the value of strideS). The singular values of A_j in decreasing order.

	[in] strideS: rocblas_stride. Stride from the start of one vector S_j to the next one S_(j+1). There is no restriction for the value of strideS. Normal use case is strideS >= min(m,n).

	[out] U: pointer to type. Array on the GPU (the side depends on the value of strideU). The matrices U_j of left singular vectors stored as columns. Not referenced if left_svect is set to overwrite or none.

	[in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading dimension of U_j.

	[in] strideU: rocblas_stride. Stride from the start of one matrix U_j to the next one U_(j+1). There is no restriction for the value of strideU. Normal use case is strideU >= ldu*min(m,n) if left_svect is set to singular, or strideU >= ldu*m when left_svect is equal to all.

	[out] V: pointer to type. Array on the GPU (the size depends on the value of strideV). The matrices V_j of right singular vectors stored as rows (transposed / conjugate-transposed). Not referenced if right_svect is set to overwrite or none.

	[in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular; or ldv >= 1 otherwise. The leading dimension of V.

	[in] strideV: rocblas_stride. Stride from the start of one matrix V_j to the next one V_(j+1). There is no restriction for the value of strideV. Normal use case is strideV >= ldv*n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the bidiagonal matrix B_j associated with A_j (using

BDSQR). On exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of B_j (or properly speaking, a bidiagonal matrix orthogonally equivalent to B_j). The diagonal elements of this matrix are in S_j; those that converged correspond to a subset of the singular values of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the fast thin-SVD version of the algorithm when possible.

	[out] info: pointer to a rocblas_int on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0,

BDSQR did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gesvd_strided_batched()

	
rocblas_status rocsolver_zgesvd_strided_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, double *S, const rocblas_stride strideS, rocblas_double_complex *U, const rocblas_int ldu, const rocblas_stride strideU, rocblas_double_complex *V, const rocblas_int ldv, const rocblas_stride strideV, double *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgesvd_strided_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, float *S, const rocblas_stride strideS, rocblas_float_complex *U, const rocblas_int ldu, const rocblas_stride strideU, rocblas_float_complex *V, const rocblas_int ldv, const rocblas_stride strideV, float *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgesvd_strided_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *S, const rocblas_stride strideS, double *U, const rocblas_int ldu, const rocblas_stride strideU, double *V, const rocblas_int ldv, const rocblas_stride strideV, double *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgesvd_strided_batched(rocblas_handle handle, const rocblas_svect left_svect, const rocblas_svect right_svect, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *S, const rocblas_stride strideS, float *U, const rocblas_int ldu, const rocblas_stride strideU, float *V, const rocblas_int ldv, const rocblas_stride strideV, float *E, const rocblas_stride strideE, const rocblas_workmode fast_alg, rocblas_int *info, const rocblas_int batch_count)

	GESVD_STRIDED_BATCHED computes the singular values and optionally the singular vectors of a batch of general m-by-n matrix A (Singular Value Decomposition).

The SVD of matrix A_j in the batch is given by:

\[A_j = U_j S_j V_j' \]

where the m-by-n matrix \(S_j\) is zero except, possibly, for its min(m,n) diagonal elements, which are the singular values of \(A_j\). \(U_j\) and \(V_j\) are orthogonal (unitary) matrices. The first min(m,n) columns of \(U_j\) and \(V_j\) are the left and right singular vectors of \(A_j\), respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of the right singular vectors, i.e. the rows of \(V_j'\).

left_svect and right_svect are rocblas_svect enums that can take the following values:

	rocblas_svect_all: the entire matrix \(U_j\) (or \(V_j'\)) is computed,

	rocblas_svect_singular: only the singular vectors (first min(m,n) columns of \(U_j\) or rows of \(V_j'\)) are computed,

	rocblas_svect_overwrite: the first columns (or rows) of \(A_j\) are overwritten with the singular vectors, or

	rocblas_svect_none: no columns (or rows) of \(U_j\) (or \(V_j'\)) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of \(A_j\) are destroyed by the time the function returns.

	Note
	When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix \(A_j\) via a QR (or LQ) factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also requested, its computation could be sped up as well via executing some intermediate operations out-of-place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details, see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

	[in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_j in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the matrices A_j. On exit, if left_svect (or right_svect) is equal to overwrite, the first columns (or rows) of A_j contain the left (or right) corresponding singular vectors; otherwise, the contents of A_j are destroyed.

	[in] lda: rocblas_int. lda >= m. The leading dimension of A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

	[out] S: pointer to real type. Array on the GPU (the size depends on the value of strideS). The singular values of A_j in decreasing order.

	[in] strideS: rocblas_stride. Stride from the start of one vector S_j to the next one S_(j+1). There is no restriction for the value of strideS. Normal use case is strideS >= min(m,n).

	[out] U: pointer to type. Array on the GPU (the side depends on the value of strideU). The matrices U_j of left singular vectors stored as columns. Not referenced if left_svect is set to overwrite or none.

	[in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading dimension of U_j.

	[in] strideU: rocblas_stride. Stride from the start of one matrix U_j to the next one U_(j+1). There is no restriction for the value of strideU. Normal use case is strideU >= ldu*min(m,n) if left_svect is set to singular, or strideU >= ldu*m when left_svect is equal to all.

	[out] V: pointer to type. Array on the GPU (the size depends on the value of strideV). The matrices V_j of right singular vectors stored as rows (transposed / conjugate-transposed). Not referenced if right_svect is set to overwrite or none.

	[in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular; or ldv >= 1 otherwise. The leading dimension of V.

	[in] strideV: rocblas_stride. Stride from the start of one matrix V_j to the next one V_(j+1). There is no restriction for the value of strideV. Normal use case is strideV >= ldv*n.

	[out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This array is used to work internally with the bidiagonal matrix B_j associated with A_j (using

BDSQR). On exit, if info > 0, E_j contains the unconverged off-diagonal elements of B_j (or properly speaking, a bidiagonal matrix orthogonally equivalent to B_j). The diagonal elements of this matrix are in S_j; those that converged correspond to a subset of the singular values of A_j (not necessarily ordered).

	[in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1). There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

	[in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the fast thin-SVD version of the algorithm when possible.

	[out] info: pointer to a rocblas_int on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0, BDSQR did not converge. i elements of E_j did not converge to zero.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.4. Lapack-like Functions

Other Lapack-like routines provided by rocSOLVER. These are divided into the following subcategories:

	Triangular factorizations. Based on Gaussian elimination.

	Linear-systems solvers. Based on triangular factorizations.

Note

Throughout the APIs’ descriptions, we use the following notations:

	x[i] stands for the i-th element of vector x, while A[i,j] represents the element
in the i-th row and j-th column of matrix A. Indices are 1-based, i.e. x[1] is the first
element of x.

	If X is a real vector or matrix, \(X^T\) indicates its transpose; if X is complex, then
\(X^H\) represents its conjugate transpose. When X could be real or complex, we use X’ to
indicate X transposed or X conjugate transposed, accordingly.

	x_i \(=x_i\); we sometimes use both notations, \(x_i\) when displaying mathematical
equations, and x_i in the text describing the function parameters.

3.4.1. Triangular factorizations

List of Lapack-like triangular factorizations

	rocsolver_<type>getf2_npvt()

	rocsolver_<type>getf2_npvt_batched()

	rocsolver_<type>getf2_npvt_strided_batched()

	rocsolver_<type>getrf_npvt()

	rocsolver_<type>getrf_npvt_batched()

	rocsolver_<type>getrf_npvt_strided_batched()

rocsolver_<type>getf2_npvt()

	
rocblas_status rocsolver_zgetf2_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetf2_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetf2_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetf2_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	GETF2_NPVT computes the LU factorization of a general m-by-n matrix A without partial pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

\[A = LU \]

where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2 routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is singular. U[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

rocsolver_<type>getf2_npvt_batched()

	
rocblas_status rocsolver_zgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	GETF2_NPVT_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = L_iU_i \]

where \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2_BATCHED routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getf2_npvt_strided_batched()

	
rocblas_status rocsolver_zgetf2_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetf2_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetf2_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetf2_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	GETF2_NPVT_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = L_iU_i \]

where \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2_STRIDED_BATCHED routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_npvt()

	
rocblas_status rocsolver_zgetrf_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetrf_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetrf_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetrf_npvt(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	GETRF_NPVT computes the LU factorization of a general m-by-n matrix A without partial pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

\[A = LU \]

where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETRF routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

	[in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is singular. U[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

rocsolver_<type>getrf_npvt_batched()

	
rocblas_status rocsolver_zgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	GETRF_NPVT_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = L_iU_i \]

where \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETRF_BATCHED routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_npvt_strided_batched()

	
rocblas_status rocsolver_zgetrf_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetrf_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetrf_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetrf_npvt_strided_batched(rocblas_handle handle, const rocblas_int m, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	GETRF_NPVT_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix \(A_i\) in the batch has the form

\[A_i = L_iU_i \]

where \(L_i\) is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and \(U_i\) is upper triangular (upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETRF_STRIDED_BATCHED routines instead.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

	[in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The unit diagonal elements of L_i are not stored.

	[in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero element in the diagonal. The factorization from this point might be incomplete.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.4.2. Linear-systems solvers

List of Lapack-like linear solvers

	rocsolver_<type>getri_npvt()

	rocsolver_<type>getri_npvt_batched()

	rocsolver_<type>getri_npvt_strided_batched()

	rocsolver_<type>getri_outofplace()

	rocsolver_<type>getri_outofplace_batched()

	rocsolver_<type>getri_outofplace_strided_batched()

	rocsolver_<type>getri_npvt_outofplace()

	rocsolver_<type>getri_npvt_outofplace_batched()

	rocsolver_<type>getri_npvt_outofplace_strided_batched()

rocsolver_<type>getri_npvt()

	
rocblas_status rocsolver_zgetri_npvt(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetri_npvt(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetri_npvt(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetri_npvt(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *info)

	GETRI_NPVT inverts a general n-by-n matrix A using the LU factorization computed by GETRF_NPVT.

The inverse is computed by solving the linear system

\[A^{-1}L = U^{-1} \]

where L is the lower triangular factor of A with unit diagonal elements, and U is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factors L and U of the factorization A = L*U returned by

GETRF_NPVT. On exit, the inverse of A if info = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_npvt_batched()

	
rocblas_status rocsolver_zgetri_npvt_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_npvt_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_npvt_batched(rocblas_handle handle, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_npvt_batched(rocblas_handle handle, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *info, const rocblas_int batch_count)

	GETRI_NPVT_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by GETRF_NPVT_BATCHED.

The inverse of matrix \(A_j\) in the batch is computed by solving the linear system

\[A_j^{-1} L_j = U_j^{-1} \]

where \(L_j\) is the lower triangular factor of \(A_j\) with unit diagonal elements, and \(U_j\) is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the factors L_j and U_j of the factorization A = L_j*U_j returned by

GETRF_NPVT_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_npvt_strided_batched()

	
rocblas_status rocsolver_zgetri_npvt_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_npvt_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_npvt_strided_batched(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_npvt_strided_batched(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *info, const rocblas_int batch_count)

	GETRI_NPVT_STRIDED_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by GETRF_NPVT_STRIDED_BATCHED.

The inverse of matrix \(A_j\) in the batch is computed by solving the linear system

\[A_j^{-1} L_j = U_j^{-1} \]

where \(L_j\) is the lower triangular factor of \(A_j\) with unit diagonal elements, and \(U_j\) is the upper triangular factor.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the factors L_j and U_j of the factorization A_j = L_j*U_j returned by

GETRF_NPVT_STRIDED_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_outofplace()

	
rocblas_status rocsolver_zgetri_outofplace(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetri_outofplace(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetri_outofplace(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, rocblas_int *ipiv, double *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetri_outofplace(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, rocblas_int *ipiv, float *C, const rocblas_int ldc, rocblas_int *info)

	GETRI_OUTOFPLACE computes the inverse \(C = A^{-1}\) of a general n-by-n matrix A.

The inverse is computed by solving the linear system

\[AC = I \]

where I is the identity matrix, and A is factorized as \(A = PLU\) as given by GETRF.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factorization A = P*L*U returned by

GETRF.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned by

GETRF.

	[out] C: pointer to type. Array on the GPU of dimension ldc*n. If info = 0, the inverse of A. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_outofplace_batched()

	
rocblas_status rocsolver_zgetri_outofplace_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_outofplace_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_outofplace_batched(rocblas_handle handle, const rocblas_int n, double *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, double *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_outofplace_batched(rocblas_handle handle, const rocblas_int n, float *const A[], const rocblas_int lda, rocblas_int *ipiv, const rocblas_stride strideP, float *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	GETRI_OUTOFPLACE_BATCHED computes the inverse \(C_j = A_j^{-1}\) of a batch of general n-by-n matrices \(A_j\).

The inverse is computed by solving the linear system

\[A_j C_j = I \]

where I is the identity matrix, and \(A_j\) is factorized as \(A_j = P_j L_j U_j\) as given by GETRF_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[in] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by

GETRF_BATCHED.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The pivot indices returned by

GETRF_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(i+j). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] C: array of pointers to type. Each pointer points to an array on the GPU of dimension ldc*n. If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_outofplace_strided_batched()

	
rocblas_status rocsolver_zgetri_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_double_complex *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, rocblas_float_complex *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, double *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_int *ipiv, const rocblas_stride strideP, float *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	GETRI_OUTOFPLACE_STRIDED_BATCHED computes the inverse \(C_j = A_j^{-1}\) of a batch of general n-by-n matrices \(A_j\).

The inverse is computed by solving the linear system

\[A_j C_j = I \]

where I is the identity matrix, and \(A_j\) is factorized as \(A_j = P_j L_j U_j\) as given by GETRF_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by

GETRF_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP). The pivot indices returned by

GETRF_STRIDED_BATCHED.

	[in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1). There is no restriction for the value of strideP. Normal use case is strideP >= n.

	[out] C: pointer to type. Array on the GPU (the size depends on the value of strideC). If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

	[in] strideC: rocblas_stride. Stride from the start of one matrix C_j to the next one C_(j+1). There is no restriction for the value of strideC. Normal use case is strideC >= ldc*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_npvt_outofplace()

	
rocblas_status rocsolver_zgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_cgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_dgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, double *C, const rocblas_int ldc, rocblas_int *info)

	

	
rocblas_status rocsolver_sgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, float *C, const rocblas_int ldc, rocblas_int *info)

	GETRI_NPVT_OUTOFPLACE computes the inverse \(C = A^{-1}\) of a general n-by-n matrix A without partial pivoting.

The inverse is computed by solving the linear system

\[AC = I \]

where I is the identity matrix, and A is factorized as \(A = LU\) as given by GETRF_NPVT.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

	[in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factorization A = L*U returned by

GETRF_NPVT.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

	[out] C: pointer to type. Array on the GPU of dimension ldc*n. If info = 0, the inverse of A. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C.

	[out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_npvt_outofplace_batched()

	
rocblas_status rocsolver_zgetri_npvt_outofplace_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *const A[], const rocblas_int lda, rocblas_double_complex *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_npvt_outofplace_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *const A[], const rocblas_int lda, rocblas_float_complex *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_npvt_outofplace_batched(rocblas_handle handle, const rocblas_int n, double *const A[], const rocblas_int lda, double *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_npvt_outofplace_batched(rocblas_handle handle, const rocblas_int n, float *const A[], const rocblas_int lda, float *const C[], const rocblas_int ldc, rocblas_int *info, const rocblas_int batch_count)

	GETRI_NPVT_OUTOFPLACE_BATCHED computes the inverse \(C_j = A_j^{-1}\) of a batch of general n-by-n matrices \(A_j\) without partial pivoting.

The inverse is computed by solving the linear system

\[A_j C_j = I \]

where I is the identity matrix, and \(A_j\) is factorized as \(A_j = L_j U_j\) as given by GETRF_NPVT_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[in] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. The factors L_j and U_j of the factorization A_j = L_j*U_j returned by

GETRF_NPVT_BATCHED.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[out] C: array of pointers to type. Each pointer points to an array on the GPU of dimension ldc*n. If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_npvt_outofplace_strided_batched()

	
rocblas_status rocsolver_zgetri_npvt_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_double_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_double_complex *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_cgetri_npvt_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, rocblas_float_complex *A, const rocblas_int lda, const rocblas_stride strideA, rocblas_float_complex *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_dgetri_npvt_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, double *A, const rocblas_int lda, const rocblas_stride strideA, double *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	

	
rocblas_status rocsolver_sgetri_npvt_outofplace_strided_batched(rocblas_handle handle, const rocblas_int n, float *A, const rocblas_int lda, const rocblas_stride strideA, float *C, const rocblas_int ldc, const rocblas_stride strideC, rocblas_int *info, const rocblas_int batch_count)

	GETRI_NPVT_OUTOFPLACE_STRIDED_BATCHED computes the inverse \(C_j = A_j^{-1}\) of a batch of general n-by-n matrices \(A_j\) without partial pivoting.

The inverse is computed by solving the linear system

\[A_j C_j = I \]

where I is the identity matrix, and \(A_j\) is factorized as \(A_j = L_j U_j\) as given by GETRF_NPVT_STRIDED_BATCHED.

	Parameters
	
	[in] handle: rocblas_handle.

	[in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

	[in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors L_j and U_j of the factorization A_j = L_j*U_j returned by

GETRF_NPVT_STRIDED_BATCHED.

	[in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

	[in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1). There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

	[out] C: pointer to type. Array on the GPU (the size depends on the value of strideC). If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

	[in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

	[in] strideC: rocblas_stride. Stride from the start of one matrix C_j to the next one C_(j+1). There is no restriction for the value of strideC. Normal use case is strideC >= ldc*n

	[out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0, successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

	[in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.5. Logging Functions and Library Information

3.5.1. Logging functions

These functions control rocSOLVER’s Multi-level Logging capabilities.

List of logging functions

	rocsolver_log_begin()

	rocsolver_log_end()

	rocsolver_log_set_layer_mode()

	rocsolver_log_set_max_levels()

	rocsolver_log_restore_defaults()

	rocsolver_log_write_profile()

	rocsolver_log_flush_profile()

rocsolver_log_begin()

	
rocblas_status rocsolver_log_begin(void)

	LOG_BEGIN begins a rocSOLVER multi-level logging session.

Initializes the rocSOLVER logging environment with default values (no logging and one level depth). Default mode can be overridden by using the environment variables ROCSOLVER_LAYER and ROCSOLVER_LEVELS.

This function also sets the streams where the log results will be outputted. The default is STDERR for all the modes. This default can also be overridden using the environment variable ROCSOLVER_LOG_PATH, or specifically ROCSOLVER_LOG_TRACE_PATH, ROCSOLVER_LOG_BENCH_PATH, and/or ROCSOLVER_LOG_PROFILE_PATH.

rocsolver_log_end()

	
rocblas_status rocsolver_log_end(void)

	LOG_END ends the multi-level rocSOLVER logging session.

If applicable, this function also prints the profile logging results before cleaning the logging environment.

rocsolver_log_set_layer_mode()

	
rocblas_status rocsolver_log_set_layer_mode(const rocblas_layer_mode_flags layer_mode)

	LOG_SET_LAYER_MODE sets the logging mode for the rocSOLVER multi-level logging environment.

	Parameters
	
	[in] layer_mode: rocblas_layer_mode_flags. Specifies the logging mode.

rocsolver_log_set_max_levels()

	
rocblas_status rocsolver_log_set_max_levels(const rocblas_int max_levels)

	LOG_SET_MAX_LEVELS sets the maximum trace log depth for the rocSOLVER multi-level logging environment.

	Parameters
	
	[in] max_levels: rocblas_int. max_levels >= 1. Specifies the maximum depth at which nested function calls will appear in the trace and profile logs.

rocsolver_log_restore_defaults()

	
rocblas_status rocsolver_log_restore_defaults(void)

	LOG_RESTORE_DEFAULTS restores the default values of the rocSOLVER multi-level logging environment.

This function sets the logging mode and maximum trace log depth to their default values (no logging and one level depth).

rocsolver_log_write_profile()

	
rocblas_status rocsolver_log_write_profile(void)

	LOG_WRITE_PROFILE prints the profile logging results.

rocsolver_log_flush_profile()

	
rocblas_status rocsolver_log_flush_profile(void)

	LOG_FLUSH_PROFILE prints the profile logging results and clears the profile record.

3.5.2. Library information

List of library information functions

	rocsolver_get_version_string()

	rocsolver_get_version_string_size()

rocsolver_get_version_string()

	
rocblas_status rocsolver_get_version_string(char *buf, size_t len)

	GET_VERSION_STRING Queries the library version.

	Parameters
	
	[out] buf: A buffer that the version string will be written into.

	[in] len: The size of the given buffer in bytes.

rocsolver_get_version_string_size()

	
rocblas_status rocsolver_get_version_string_size(size_t *len)

	GET_VERSION_STRING_SIZE Queries the minimum buffer size for a successful call to rocsolver_get_version_string.

	Parameters
	
	[out] len: pointer to size_t. The minimum length of buffer to pass to

rocsolver_get_version_string.

3.6. Deprecated

Originally, rocSOLVER maintained its own types and helpers as aliases to those of rocBLAS.
These aliases are now deprecated. See the rocBLAS types [https://rocblas.readthedocs.io/en/latest/functions.html#rocblas-types]
and rocBLAS auxiliary functions [https://rocblas.readthedocs.io/en/latest/functions.html#auxiliary]
documentation for information on the suggested replacements.

	Deprecated Types.

	Deprecated Auxiliary functions.

3.6.1. Types

List of deprecated types

	rocsolver_int

	rocsolver_handle

	rocsolver_direction

	rocsolver_storev

	rocsolver_operation

	rocsolver_fill

	rocsolver_diagonal

	rocsolver_side

	rocsolver_status

rocsolver_int

	
typedef rocblas_int rocsolver_int

	
	
Deprecated:

	Use rocblas_int.

Deprecated since version 3.5: Use rocblas_int.

rocsolver_handle

	
typedef rocblas_handle rocsolver_handle

	
	
Deprecated:

	Use rocblas_handle.

Deprecated since version 3.5: Use rocblas_handle.

rocsolver_direction

	
typedef rocblas_direct rocsolver_direction

	
	
Deprecated:

	Use rocblas_direct

Deprecated since version 3.5: Use rocblas_direct.

rocsolver_storev

	
typedef rocblas_storev rocsolver_storev

	
	
Deprecated:

	Use rocblas_storev.

Deprecated since version 3.5: Use rocblas_storev.

rocsolver_operation

	
typedef rocblas_operation rocsolver_operation

	
	
Deprecated:

	Use rocblas_operation.

Deprecated since version 3.5: Use rocblas_operation.

rocsolver_fill

	
typedef rocblas_fill rocsolver_fill

	
	
Deprecated:

	Use rocblas_fill.

Deprecated since version 3.5: Use rocblas_fill.

rocsolver_diagonal

	
typedef rocblas_diagonal rocsolver_diagonal

	
	
Deprecated:

	Use rocblas_diagonal.

Deprecated since version 3.5: Use rocblas_diagonal.

rocsolver_side

	
typedef rocblas_side rocsolver_side

	
	
Deprecated:

	Use rocblas_stide.

Deprecated since version 3.5: Use rocblas_side.

rocsolver_status

	
typedef rocblas_status rocsolver_status

	
	
Deprecated:

	Use rocblas_status.

Deprecated since version 3.5: Use rocblas_status.

3.6.2. Auxiliary functions

List of deprecated helpers

	rocsolver_create_handle()

	rocsolver_destroy_handle()

	rocsolver_set_stream()

	rocsolver_get_stream()

	rocsolver_set_vector()

	rocsolver_get_vector()

	rocsolver_set_matrix()

	rocsolver_get_matrix()

rocsolver_create_handle()

	
rocsolver_status rocsolver_create_handle(rocsolver_handle *handle)

	
	
Deprecated:

	Use rocblas_create_handle.

Deprecated since version 3.5: Use rocblas_create_handle().

rocsolver_destroy_handle()

	
rocsolver_status rocsolver_destroy_handle(rocsolver_handle handle)

	
	
Deprecated:

	Use rocblas_destroy_handle.

Deprecated since version 3.5: Use rocblas_destroy_handle().

rocsolver_set_stream()

	
rocsolver_status rocsolver_set_stream(rocsolver_handle handle, hipStream_t stream)

	
	
Deprecated:

	Use rocblas_set_stream.

Deprecated since version 3.5: Use rocblas_set_stream().

rocsolver_get_stream()

	
rocsolver_status rocsolver_get_stream(rocsolver_handle handle, hipStream_t *stream)

	
	
Deprecated:

	Use rocblas_get_stream.

Deprecated since version 3.5: Use rocblas_get_stream().

rocsolver_set_vector()

	
rocsolver_status rocsolver_set_vector(rocsolver_int n, rocsolver_int elem_size, const void *x, rocsolver_int incx, void *y, rocsolver_int incy)

	
	
Deprecated:

	Use rocblas_set_vector.

Deprecated since version 3.5: Use rocblas_set_vector().

rocsolver_get_vector()

	
rocsolver_status rocsolver_get_vector(rocsolver_int n, rocsolver_int elem_size, const void *x, rocsolver_int incx, void *y, rocsolver_int incy)

	
	
Deprecated:

	Use rocblas_get_vector.

Deprecated since version 3.5: Use rocblas_get_vector().

rocsolver_set_matrix()

	
rocsolver_status rocsolver_set_matrix(rocsolver_int rows, rocsolver_int cols, rocsolver_int elem_size, const void *a, rocsolver_int lda, void *b, rocsolver_int ldb)

	
	
Deprecated:

	Use rocblas_set_matrix.

Deprecated since version 3.5: Use rocblas_set_matrix().

rocsolver_get_matrix()

	
rocsolver_status rocsolver_get_matrix(rocsolver_int rows, rocsolver_int cols, rocsolver_int elem_size, const void *a, rocsolver_int lda, void *b, rocsolver_int ldb)

	
	
Deprecated:

	Use rocblas_get_matrix.

Deprecated since version 3.5: Use rocblas_get_matrix().

4. License & Attributions

Copyright (c) 2018-2021 Advanced Micro Devices, Inc.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes code derived from the LAPACK and MAGMA projects. Copyright holders for these projects are indicated below, and distributed under their license terms as specified.

– LAPACK –

	Copyright (c) 1992-2013 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

	Copyright (c) 2000-2013 The University of California Berkeley. All rights reserved.

	Copyright (c) 2006-2013 The University of Colorado Denver. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

– MAGMA –

Copyright (c) 2009-2021 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. in no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Index

 G
 | P
 | R
 | S
 | T
 | X

G

 	
 	GEBRD_BLOCKSIZE (C macro)

 	GEBRD_GEBD2_SWITCHSIZE (C macro)

 	GEQxF_BLOCKSIZE (C macro)

 	
 	GEQxF_GEQx2_SWITCHSIZE (C macro)

 	GExQF_BLOCKSIZE (C macro)

 	GExQF_GExQ2_SWITCHSIZE (C macro)

P

 	
 	POTRF_BLOCKSIZE (C macro)

 	
 	POTRF_POTF2_SWITCHSIZE (C macro)

R

 	
 	rocblas_direct (C enum)

 	rocblas_direct.rocblas_backward_direction (C enumerator)

 	rocblas_direct.rocblas_forward_direction (C enumerator)

 	rocblas_eform (C enum)

 	rocblas_eform.rocblas_eform_abx (C enumerator)

 	rocblas_eform.rocblas_eform_ax (C enumerator)

 	rocblas_eform.rocblas_eform_bax (C enumerator)

 	rocblas_evect (C enum)

 	rocblas_evect.rocblas_evect_none (C enumerator)

 	rocblas_evect.rocblas_evect_original (C enumerator)

 	rocblas_evect.rocblas_evect_tridiagonal (C enumerator)

 	rocblas_storev (C enum)

 	rocblas_storev.rocblas_column_wise (C enumerator)

 	rocblas_storev.rocblas_row_wise (C enumerator)

 	rocblas_svect (C enum)

 	rocblas_svect.rocblas_svect_all (C enumerator)

 	rocblas_svect.rocblas_svect_none (C enumerator)

 	rocblas_svect.rocblas_svect_overwrite (C enumerator)

 	rocblas_svect.rocblas_svect_singular (C enumerator)

 	rocblas_workmode (C enum)

 	rocblas_workmode.rocblas_inplace (C enumerator)

 	rocblas_workmode.rocblas_outofplace (C enumerator)

 	rocsolver_cbdsqr (C function)

 	rocsolver_cgebd2 (C function)

 	rocsolver_cgebd2_batched (C function)

 	rocsolver_cgebd2_strided_batched (C function)

 	rocsolver_cgebrd (C function)

 	rocsolver_cgebrd_batched (C function)

 	rocsolver_cgebrd_strided_batched (C function)

 	rocsolver_cgelq2 (C function)

 	rocsolver_cgelq2_batched (C function)

 	rocsolver_cgelq2_strided_batched (C function)

 	rocsolver_cgelqf (C function)

 	rocsolver_cgelqf_batched (C function)

 	rocsolver_cgelqf_strided_batched (C function)

 	rocsolver_cgels (C function)

 	rocsolver_cgels_batched (C function)

 	rocsolver_cgels_strided_batched (C function)

 	rocsolver_cgeql2 (C function)

 	rocsolver_cgeql2_batched (C function)

 	rocsolver_cgeql2_strided_batched (C function)

 	rocsolver_cgeqlf (C function)

 	rocsolver_cgeqlf_batched (C function)

 	rocsolver_cgeqlf_strided_batched (C function)

 	rocsolver_cgeqr2 (C function)

 	rocsolver_cgeqr2_batched (C function)

 	rocsolver_cgeqr2_strided_batched (C function)

 	rocsolver_cgeqrf (C function)

 	rocsolver_cgeqrf_batched (C function)

 	rocsolver_cgeqrf_strided_batched (C function)

 	rocsolver_cgerq2 (C function)

 	rocsolver_cgerq2_batched (C function)

 	rocsolver_cgerq2_strided_batched (C function)

 	rocsolver_cgerqf (C function)

 	rocsolver_cgerqf_batched (C function)

 	rocsolver_cgerqf_strided_batched (C function)

 	rocsolver_cgesv (C function)

 	rocsolver_cgesv_batched (C function)

 	rocsolver_cgesv_strided_batched (C function)

 	rocsolver_cgesvd (C function)

 	rocsolver_cgesvd_batched (C function)

 	rocsolver_cgesvd_strided_batched (C function)

 	rocsolver_cgetf2 (C function)

 	rocsolver_cgetf2_batched (C function)

 	rocsolver_cgetf2_npvt (C function)

 	rocsolver_cgetf2_npvt_batched (C function)

 	rocsolver_cgetf2_npvt_strided_batched (C function)

 	rocsolver_cgetf2_strided_batched (C function)

 	rocsolver_cgetrf (C function)

 	rocsolver_cgetrf_batched (C function)

 	rocsolver_cgetrf_npvt (C function)

 	rocsolver_cgetrf_npvt_batched (C function)

 	rocsolver_cgetrf_npvt_strided_batched (C function)

 	rocsolver_cgetrf_strided_batched (C function)

 	rocsolver_cgetri (C function)

 	rocsolver_cgetri_batched (C function)

 	rocsolver_cgetri_npvt (C function)

 	rocsolver_cgetri_npvt_batched (C function)

 	rocsolver_cgetri_npvt_outofplace (C function)

 	rocsolver_cgetri_npvt_outofplace_batched (C function)

 	rocsolver_cgetri_npvt_outofplace_strided_batched (C function)

 	rocsolver_cgetri_npvt_strided_batched (C function)

 	rocsolver_cgetri_outofplace (C function)

 	rocsolver_cgetri_outofplace_batched (C function)

 	rocsolver_cgetri_outofplace_strided_batched (C function)

 	rocsolver_cgetri_strided_batched (C function)

 	rocsolver_cgetrs (C function)

 	rocsolver_cgetrs_batched (C function)

 	rocsolver_cgetrs_strided_batched (C function)

 	rocsolver_cheev (C function)

 	rocsolver_cheev_batched (C function)

 	rocsolver_cheev_strided_batched (C function)

 	rocsolver_cheevd (C function)

 	rocsolver_cheevd_batched (C function)

 	rocsolver_cheevd_strided_batched (C function)

 	rocsolver_chegs2 (C function)

 	rocsolver_chegs2_batched (C function)

 	rocsolver_chegs2_strided_batched (C function)

 	rocsolver_chegst (C function)

 	rocsolver_chegst_batched (C function)

 	rocsolver_chegst_strided_batched (C function)

 	rocsolver_chegv (C function)

 	rocsolver_chegv_batched (C function)

 	rocsolver_chegv_strided_batched (C function)

 	rocsolver_chegvd (C function)

 	rocsolver_chegvd_batched (C function)

 	rocsolver_chegvd_strided_batched (C function)

 	rocsolver_chetd2 (C function)

 	rocsolver_chetd2_batched (C function)

 	rocsolver_chetd2_strided_batched (C function)

 	rocsolver_chetrd (C function)

 	rocsolver_chetrd_batched (C function)

 	rocsolver_chetrd_strided_batched (C function)

 	rocsolver_clabrd (C function)

 	rocsolver_clacgv (C function)

 	rocsolver_clarf (C function)

 	rocsolver_clarfb (C function)

 	rocsolver_clarfg (C function)

 	rocsolver_clarft (C function)

 	rocsolver_claswp (C function)

 	rocsolver_clasyf (C function)

 	rocsolver_clatrd (C function)

 	rocsolver_cposv (C function)

 	rocsolver_cposv_batched (C function)

 	rocsolver_cposv_strided_batched (C function)

 	rocsolver_cpotf2 (C function)

 	rocsolver_cpotf2_batched (C function)

 	rocsolver_cpotf2_strided_batched (C function)

 	rocsolver_cpotrf (C function)

 	rocsolver_cpotrf_batched (C function)

 	rocsolver_cpotrf_strided_batched (C function)

 	rocsolver_cpotri (C function)

 	rocsolver_cpotri_batched (C function)

 	rocsolver_cpotri_strided_batched (C function)

 	rocsolver_cpotrs (C function)

 	rocsolver_cpotrs_batched (C function)

 	rocsolver_cpotrs_strided_batched (C function)

 	rocsolver_create_handle (C function)

 	rocsolver_cstedc (C function)

 	rocsolver_csteqr (C function)

 	rocsolver_csytf2 (C function)

 	rocsolver_csytf2_batched (C function)

 	rocsolver_csytf2_strided_batched (C function)

 	rocsolver_csytrf (C function)

 	rocsolver_csytrf_batched (C function)

 	rocsolver_csytrf_strided_batched (C function)

 	rocsolver_ctrtri (C function)

 	rocsolver_ctrtri_batched (C function)

 	rocsolver_ctrtri_strided_batched (C function)

 	rocsolver_cung2l (C function)

 	rocsolver_cung2r (C function)

 	rocsolver_cungbr (C function)

 	rocsolver_cungl2 (C function)

 	rocsolver_cunglq (C function)

 	rocsolver_cungql (C function)

 	rocsolver_cungqr (C function)

 	rocsolver_cungtr (C function)

 	rocsolver_cunm2l (C function)

 	rocsolver_cunm2r (C function)

 	rocsolver_cunmbr (C function)

 	rocsolver_cunml2 (C function)

 	rocsolver_cunmlq (C function)

 	rocsolver_cunmql (C function)

 	rocsolver_cunmqr (C function)

 	rocsolver_cunmtr (C function)

 	rocsolver_dbdsqr (C function)

 	rocsolver_destroy_handle (C function)

 	rocsolver_dgebd2 (C function)

 	rocsolver_dgebd2_batched (C function)

 	rocsolver_dgebd2_strided_batched (C function)

 	rocsolver_dgebrd (C function)

 	rocsolver_dgebrd_batched (C function)

 	rocsolver_dgebrd_strided_batched (C function)

 	rocsolver_dgelq2 (C function)

 	rocsolver_dgelq2_batched (C function)

 	rocsolver_dgelq2_strided_batched (C function)

 	rocsolver_dgelqf (C function)

 	rocsolver_dgelqf_batched (C function)

 	rocsolver_dgelqf_strided_batched (C function)

 	rocsolver_dgels (C function)

 	rocsolver_dgels_batched (C function)

 	rocsolver_dgels_strided_batched (C function)

 	rocsolver_dgeql2 (C function)

 	rocsolver_dgeql2_batched (C function)

 	rocsolver_dgeql2_strided_batched (C function)

 	rocsolver_dgeqlf (C function)

 	rocsolver_dgeqlf_batched (C function)

 	rocsolver_dgeqlf_strided_batched (C function)

 	rocsolver_dgeqr2 (C function)

 	rocsolver_dgeqr2_batched (C function)

 	rocsolver_dgeqr2_strided_batched (C function)

 	rocsolver_dgeqrf (C function)

 	rocsolver_dgeqrf_batched (C function)

 	rocsolver_dgeqrf_strided_batched (C function)

 	rocsolver_dgerq2 (C function)

 	rocsolver_dgerq2_batched (C function)

 	rocsolver_dgerq2_strided_batched (C function)

 	rocsolver_dgerqf (C function)

 	rocsolver_dgerqf_batched (C function)

 	rocsolver_dgerqf_strided_batched (C function)

 	rocsolver_dgesv (C function)

 	rocsolver_dgesv_batched (C function)

 	rocsolver_dgesv_strided_batched (C function)

 	rocsolver_dgesvd (C function)

 	rocsolver_dgesvd_batched (C function)

 	rocsolver_dgesvd_strided_batched (C function)

 	rocsolver_dgetf2 (C function)

 	rocsolver_dgetf2_batched (C function)

 	rocsolver_dgetf2_npvt (C function)

 	rocsolver_dgetf2_npvt_batched (C function)

 	rocsolver_dgetf2_npvt_strided_batched (C function)

 	rocsolver_dgetf2_strided_batched (C function)

 	rocsolver_dgetrf (C function)

 	rocsolver_dgetrf_batched (C function)

 	rocsolver_dgetrf_npvt (C function)

 	rocsolver_dgetrf_npvt_batched (C function)

 	rocsolver_dgetrf_npvt_strided_batched (C function)

 	rocsolver_dgetrf_strided_batched (C function)

 	rocsolver_dgetri (C function)

 	rocsolver_dgetri_batched (C function)

 	rocsolver_dgetri_npvt (C function)

 	rocsolver_dgetri_npvt_batched (C function)

 	rocsolver_dgetri_npvt_outofplace (C function)

 	rocsolver_dgetri_npvt_outofplace_batched (C function)

 	rocsolver_dgetri_npvt_outofplace_strided_batched (C function)

 	rocsolver_dgetri_npvt_strided_batched (C function)

 	rocsolver_dgetri_outofplace (C function)

 	rocsolver_dgetri_outofplace_batched (C function)

 	rocsolver_dgetri_outofplace_strided_batched (C function)

 	rocsolver_dgetri_strided_batched (C function)

 	rocsolver_dgetrs (C function)

 	rocsolver_dgetrs_batched (C function)

 	rocsolver_dgetrs_strided_batched (C function)

 	rocsolver_diagonal (C type)

 	rocsolver_direction (C type)

 	rocsolver_dlabrd (C function)

 	rocsolver_dlarf (C function)

 	rocsolver_dlarfb (C function)

 	rocsolver_dlarfg (C function)

 	rocsolver_dlarft (C function)

 	rocsolver_dlaswp (C function)

 	rocsolver_dlasyf (C function)

 	rocsolver_dlatrd (C function)

 	rocsolver_dorg2l (C function)

 	rocsolver_dorg2r (C function)

 	rocsolver_dorgbr (C function)

 	rocsolver_dorgl2 (C function)

 	rocsolver_dorglq (C function)

 	rocsolver_dorgql (C function)

 	rocsolver_dorgqr (C function)

 	rocsolver_dorgtr (C function)

 	rocsolver_dorm2l (C function)

 	rocsolver_dorm2r (C function)

 	rocsolver_dormbr (C function)

 	rocsolver_dorml2 (C function)

 	rocsolver_dormlq (C function)

 	rocsolver_dormql (C function)

 	rocsolver_dormqr (C function)

 	rocsolver_dormtr (C function)

 	rocsolver_dposv (C function)

 	rocsolver_dposv_batched (C function)

 	rocsolver_dposv_strided_batched (C function)

 	rocsolver_dpotf2 (C function)

 	rocsolver_dpotf2_batched (C function)

 	rocsolver_dpotf2_strided_batched (C function)

 	rocsolver_dpotrf (C function)

 	rocsolver_dpotrf_batched (C function)

 	rocsolver_dpotrf_strided_batched (C function)

 	rocsolver_dpotri (C function)

 	rocsolver_dpotri_batched (C function)

 	rocsolver_dpotri_strided_batched (C function)

 	rocsolver_dpotrs (C function)

 	rocsolver_dpotrs_batched (C function)

 	rocsolver_dpotrs_strided_batched (C function)

 	rocsolver_dstedc (C function)

 	rocsolver_dsteqr (C function)

 	rocsolver_dsterf (C function)

 	rocsolver_dsyev (C function)

 	rocsolver_dsyev_batched (C function)

 	rocsolver_dsyev_strided_batched (C function)

 	rocsolver_dsyevd (C function)

 	rocsolver_dsyevd_batched (C function)

 	rocsolver_dsyevd_strided_batched (C function)

 	rocsolver_dsygs2 (C function)

 	rocsolver_dsygs2_batched (C function)

 	rocsolver_dsygs2_strided_batched (C function)

 	rocsolver_dsygst (C function)

 	rocsolver_dsygst_batched (C function)

 	rocsolver_dsygst_strided_batched (C function)

 	rocsolver_dsygv (C function)

 	rocsolver_dsygv_batched (C function)

 	rocsolver_dsygv_strided_batched (C function)

 	rocsolver_dsygvd (C function)

 	rocsolver_dsygvd_batched (C function)

 	rocsolver_dsygvd_strided_batched (C function)

 	rocsolver_dsytd2 (C function)

 	rocsolver_dsytd2_batched (C function)

 	rocsolver_dsytd2_strided_batched (C function)

 	rocsolver_dsytf2 (C function)

 	rocsolver_dsytf2_batched (C function)

 	rocsolver_dsytf2_strided_batched (C function)

 	rocsolver_dsytrd (C function)

 	rocsolver_dsytrd_batched (C function)

 	rocsolver_dsytrd_strided_batched (C function)

 	rocsolver_dsytrf (C function)

 	rocsolver_dsytrf_batched (C function)

 	rocsolver_dsytrf_strided_batched (C function)

 	rocsolver_dtrtri (C function)

 	
 	rocsolver_dtrtri_batched (C function)

 	rocsolver_dtrtri_strided_batched (C function)

 	rocsolver_fill (C type)

 	rocsolver_get_matrix (C function)

 	rocsolver_get_stream (C function)

 	rocsolver_get_vector (C function)

 	rocsolver_get_version_string (C function)

 	rocsolver_get_version_string_size (C function)

 	rocsolver_handle (C type)

 	rocsolver_int (C type)

 	rocsolver_log_begin (C function)

 	rocsolver_log_end (C function)

 	rocsolver_log_flush_profile (C function)

 	rocsolver_log_restore_defaults (C function)

 	rocsolver_log_set_layer_mode (C function)

 	rocsolver_log_set_max_levels (C function)

 	rocsolver_log_write_profile (C function)

 	rocsolver_operation (C type)

 	rocsolver_sbdsqr (C function)

 	rocsolver_set_matrix (C function)

 	rocsolver_set_stream (C function)

 	rocsolver_set_vector (C function)

 	rocsolver_sgebd2 (C function)

 	rocsolver_sgebd2_batched (C function)

 	rocsolver_sgebd2_strided_batched (C function)

 	rocsolver_sgebrd (C function)

 	rocsolver_sgebrd_batched (C function)

 	rocsolver_sgebrd_strided_batched (C function)

 	rocsolver_sgelq2 (C function)

 	rocsolver_sgelq2_batched (C function)

 	rocsolver_sgelq2_strided_batched (C function)

 	rocsolver_sgelqf (C function)

 	rocsolver_sgelqf_batched (C function)

 	rocsolver_sgelqf_strided_batched (C function)

 	rocsolver_sgels (C function)

 	rocsolver_sgels_batched (C function)

 	rocsolver_sgels_strided_batched (C function)

 	rocsolver_sgeql2 (C function)

 	rocsolver_sgeql2_batched (C function)

 	rocsolver_sgeql2_strided_batched (C function)

 	rocsolver_sgeqlf (C function)

 	rocsolver_sgeqlf_batched (C function)

 	rocsolver_sgeqlf_strided_batched (C function)

 	rocsolver_sgeqr2 (C function)

 	rocsolver_sgeqr2_batched (C function)

 	rocsolver_sgeqr2_strided_batched (C function)

 	rocsolver_sgeqrf (C function)

 	rocsolver_sgeqrf_batched (C function)

 	rocsolver_sgeqrf_strided_batched (C function)

 	rocsolver_sgerq2 (C function)

 	rocsolver_sgerq2_batched (C function)

 	rocsolver_sgerq2_strided_batched (C function)

 	rocsolver_sgerqf (C function)

 	rocsolver_sgerqf_batched (C function)

 	rocsolver_sgerqf_strided_batched (C function)

 	rocsolver_sgesv (C function)

 	rocsolver_sgesv_batched (C function)

 	rocsolver_sgesv_strided_batched (C function)

 	rocsolver_sgesvd (C function)

 	rocsolver_sgesvd_batched (C function)

 	rocsolver_sgesvd_strided_batched (C function)

 	rocsolver_sgetf2 (C function)

 	rocsolver_sgetf2_batched (C function)

 	rocsolver_sgetf2_npvt (C function)

 	rocsolver_sgetf2_npvt_batched (C function)

 	rocsolver_sgetf2_npvt_strided_batched (C function)

 	rocsolver_sgetf2_strided_batched (C function)

 	rocsolver_sgetrf (C function)

 	rocsolver_sgetrf_batched (C function)

 	rocsolver_sgetrf_npvt (C function)

 	rocsolver_sgetrf_npvt_batched (C function)

 	rocsolver_sgetrf_npvt_strided_batched (C function)

 	rocsolver_sgetrf_strided_batched (C function)

 	rocsolver_sgetri (C function)

 	rocsolver_sgetri_batched (C function)

 	rocsolver_sgetri_npvt (C function)

 	rocsolver_sgetri_npvt_batched (C function)

 	rocsolver_sgetri_npvt_outofplace (C function)

 	rocsolver_sgetri_npvt_outofplace_batched (C function)

 	rocsolver_sgetri_npvt_outofplace_strided_batched (C function)

 	rocsolver_sgetri_npvt_strided_batched (C function)

 	rocsolver_sgetri_outofplace (C function)

 	rocsolver_sgetri_outofplace_batched (C function)

 	rocsolver_sgetri_outofplace_strided_batched (C function)

 	rocsolver_sgetri_strided_batched (C function)

 	rocsolver_sgetrs (C function)

 	rocsolver_sgetrs_batched (C function)

 	rocsolver_sgetrs_strided_batched (C function)

 	rocsolver_side (C type)

 	rocsolver_slabrd (C function)

 	rocsolver_slarf (C function)

 	rocsolver_slarfb (C function)

 	rocsolver_slarfg (C function)

 	rocsolver_slarft (C function)

 	rocsolver_slaswp (C function)

 	rocsolver_slasyf (C function)

 	rocsolver_slatrd (C function)

 	rocsolver_sorg2l (C function)

 	rocsolver_sorg2r (C function)

 	rocsolver_sorgbr (C function)

 	rocsolver_sorgl2 (C function)

 	rocsolver_sorglq (C function)

 	rocsolver_sorgql (C function)

 	rocsolver_sorgqr (C function)

 	rocsolver_sorgtr (C function)

 	rocsolver_sorm2l (C function)

 	rocsolver_sorm2r (C function)

 	rocsolver_sormbr (C function)

 	rocsolver_sorml2 (C function)

 	rocsolver_sormlq (C function)

 	rocsolver_sormql (C function)

 	rocsolver_sormqr (C function)

 	rocsolver_sormtr (C function)

 	rocsolver_sposv (C function)

 	rocsolver_sposv_batched (C function)

 	rocsolver_sposv_strided_batched (C function)

 	rocsolver_spotf2 (C function)

 	rocsolver_spotf2_batched (C function)

 	rocsolver_spotf2_strided_batched (C function)

 	rocsolver_spotrf (C function)

 	rocsolver_spotrf_batched (C function)

 	rocsolver_spotrf_strided_batched (C function)

 	rocsolver_spotri (C function)

 	rocsolver_spotri_batched (C function)

 	rocsolver_spotri_strided_batched (C function)

 	rocsolver_spotrs (C function)

 	rocsolver_spotrs_batched (C function)

 	rocsolver_spotrs_strided_batched (C function)

 	rocsolver_sstedc (C function)

 	rocsolver_ssteqr (C function)

 	rocsolver_ssterf (C function)

 	rocsolver_ssyev (C function)

 	rocsolver_ssyev_batched (C function)

 	rocsolver_ssyev_strided_batched (C function)

 	rocsolver_ssyevd (C function)

 	rocsolver_ssyevd_batched (C function)

 	rocsolver_ssyevd_strided_batched (C function)

 	rocsolver_ssygs2 (C function)

 	rocsolver_ssygs2_batched (C function)

 	rocsolver_ssygs2_strided_batched (C function)

 	rocsolver_ssygst (C function)

 	rocsolver_ssygst_batched (C function)

 	rocsolver_ssygst_strided_batched (C function)

 	rocsolver_ssygv (C function)

 	rocsolver_ssygv_batched (C function)

 	rocsolver_ssygv_strided_batched (C function)

 	rocsolver_ssygvd (C function)

 	rocsolver_ssygvd_batched (C function)

 	rocsolver_ssygvd_strided_batched (C function)

 	rocsolver_ssytd2 (C function)

 	rocsolver_ssytd2_batched (C function)

 	rocsolver_ssytd2_strided_batched (C function)

 	rocsolver_ssytf2 (C function)

 	rocsolver_ssytf2_batched (C function)

 	rocsolver_ssytf2_strided_batched (C function)

 	rocsolver_ssytrd (C function)

 	rocsolver_ssytrd_batched (C function)

 	rocsolver_ssytrd_strided_batched (C function)

 	rocsolver_ssytrf (C function)

 	rocsolver_ssytrf_batched (C function)

 	rocsolver_ssytrf_strided_batched (C function)

 	rocsolver_status (C type)

 	rocsolver_storev (C type)

 	rocsolver_strtri (C function)

 	rocsolver_strtri_batched (C function)

 	rocsolver_strtri_strided_batched (C function)

 	rocsolver_zbdsqr (C function)

 	rocsolver_zgebd2 (C function)

 	rocsolver_zgebd2_batched (C function)

 	rocsolver_zgebd2_strided_batched (C function)

 	rocsolver_zgebrd (C function)

 	rocsolver_zgebrd_batched (C function)

 	rocsolver_zgebrd_strided_batched (C function)

 	rocsolver_zgelq2 (C function)

 	rocsolver_zgelq2_batched (C function)

 	rocsolver_zgelq2_strided_batched (C function)

 	rocsolver_zgelqf (C function)

 	rocsolver_zgelqf_batched (C function)

 	rocsolver_zgelqf_strided_batched (C function)

 	rocsolver_zgels (C function)

 	rocsolver_zgels_batched (C function)

 	rocsolver_zgels_strided_batched (C function)

 	rocsolver_zgeql2 (C function)

 	rocsolver_zgeql2_batched (C function)

 	rocsolver_zgeql2_strided_batched (C function)

 	rocsolver_zgeqlf (C function)

 	rocsolver_zgeqlf_batched (C function)

 	rocsolver_zgeqlf_strided_batched (C function)

 	rocsolver_zgeqr2 (C function)

 	rocsolver_zgeqr2_batched (C function)

 	rocsolver_zgeqr2_strided_batched (C function)

 	rocsolver_zgeqrf (C function)

 	rocsolver_zgeqrf_batched (C function)

 	rocsolver_zgeqrf_strided_batched (C function)

 	rocsolver_zgerq2 (C function)

 	rocsolver_zgerq2_batched (C function)

 	rocsolver_zgerq2_strided_batched (C function)

 	rocsolver_zgerqf (C function)

 	rocsolver_zgerqf_batched (C function)

 	rocsolver_zgerqf_strided_batched (C function)

 	rocsolver_zgesv (C function)

 	rocsolver_zgesv_batched (C function)

 	rocsolver_zgesv_strided_batched (C function)

 	rocsolver_zgesvd (C function)

 	rocsolver_zgesvd_batched (C function)

 	rocsolver_zgesvd_strided_batched (C function)

 	rocsolver_zgetf2 (C function)

 	rocsolver_zgetf2_batched (C function)

 	rocsolver_zgetf2_npvt (C function)

 	rocsolver_zgetf2_npvt_batched (C function)

 	rocsolver_zgetf2_npvt_strided_batched (C function)

 	rocsolver_zgetf2_strided_batched (C function)

 	rocsolver_zgetrf (C function)

 	rocsolver_zgetrf_batched (C function)

 	rocsolver_zgetrf_npvt (C function)

 	rocsolver_zgetrf_npvt_batched (C function)

 	rocsolver_zgetrf_npvt_strided_batched (C function)

 	rocsolver_zgetrf_strided_batched (C function)

 	rocsolver_zgetri (C function)

 	rocsolver_zgetri_batched (C function)

 	rocsolver_zgetri_npvt (C function)

 	rocsolver_zgetri_npvt_batched (C function)

 	rocsolver_zgetri_npvt_outofplace (C function)

 	rocsolver_zgetri_npvt_outofplace_batched (C function)

 	rocsolver_zgetri_npvt_outofplace_strided_batched (C function)

 	rocsolver_zgetri_npvt_strided_batched (C function)

 	rocsolver_zgetri_outofplace (C function)

 	rocsolver_zgetri_outofplace_batched (C function)

 	rocsolver_zgetri_outofplace_strided_batched (C function)

 	rocsolver_zgetri_strided_batched (C function)

 	rocsolver_zgetrs (C function)

 	rocsolver_zgetrs_batched (C function)

 	rocsolver_zgetrs_strided_batched (C function)

 	rocsolver_zheev (C function)

 	rocsolver_zheev_batched (C function)

 	rocsolver_zheev_strided_batched (C function)

 	rocsolver_zheevd (C function)

 	rocsolver_zheevd_batched (C function)

 	rocsolver_zheevd_strided_batched (C function)

 	rocsolver_zhegs2 (C function)

 	rocsolver_zhegs2_batched (C function)

 	rocsolver_zhegs2_strided_batched (C function)

 	rocsolver_zhegst (C function)

 	rocsolver_zhegst_batched (C function)

 	rocsolver_zhegst_strided_batched (C function)

 	rocsolver_zhegv (C function)

 	rocsolver_zhegv_batched (C function)

 	rocsolver_zhegv_strided_batched (C function)

 	rocsolver_zhegvd (C function)

 	rocsolver_zhegvd_batched (C function)

 	rocsolver_zhegvd_strided_batched (C function)

 	rocsolver_zhetd2 (C function)

 	rocsolver_zhetd2_batched (C function)

 	rocsolver_zhetd2_strided_batched (C function)

 	rocsolver_zhetrd (C function)

 	rocsolver_zhetrd_batched (C function)

 	rocsolver_zhetrd_strided_batched (C function)

 	rocsolver_zlabrd (C function)

 	rocsolver_zlacgv (C function)

 	rocsolver_zlarf (C function)

 	rocsolver_zlarfb (C function)

 	rocsolver_zlarfg (C function)

 	rocsolver_zlarft (C function)

 	rocsolver_zlaswp (C function)

 	rocsolver_zlasyf (C function)

 	rocsolver_zlatrd (C function)

 	rocsolver_zposv (C function)

 	rocsolver_zposv_batched (C function)

 	rocsolver_zposv_strided_batched (C function)

 	rocsolver_zpotf2 (C function)

 	rocsolver_zpotf2_batched (C function)

 	rocsolver_zpotf2_strided_batched (C function)

 	rocsolver_zpotrf (C function)

 	rocsolver_zpotrf_batched (C function)

 	rocsolver_zpotrf_strided_batched (C function)

 	rocsolver_zpotri (C function)

 	rocsolver_zpotri_batched (C function)

 	rocsolver_zpotri_strided_batched (C function)

 	rocsolver_zpotrs (C function)

 	rocsolver_zpotrs_batched (C function)

 	rocsolver_zpotrs_strided_batched (C function)

 	rocsolver_zstedc (C function)

 	rocsolver_zsteqr (C function)

 	rocsolver_zsytf2 (C function)

 	rocsolver_zsytf2_batched (C function)

 	rocsolver_zsytf2_strided_batched (C function)

 	rocsolver_zsytrf (C function)

 	rocsolver_zsytrf_batched (C function)

 	rocsolver_zsytrf_strided_batched (C function)

 	rocsolver_ztrtri (C function)

 	rocsolver_ztrtri_batched (C function)

 	rocsolver_ztrtri_strided_batched (C function)

 	rocsolver_zung2l (C function)

 	rocsolver_zung2r (C function)

 	rocsolver_zungbr (C function)

 	rocsolver_zungl2 (C function)

 	rocsolver_zunglq (C function)

 	rocsolver_zungql (C function)

 	rocsolver_zungqr (C function)

 	rocsolver_zungtr (C function)

 	rocsolver_zunm2l (C function)

 	rocsolver_zunm2r (C function)

 	rocsolver_zunmbr (C function)

 	rocsolver_zunml2 (C function)

 	rocsolver_zunmlq (C function)

 	rocsolver_zunmql (C function)

 	rocsolver_zunmqr (C function)

 	rocsolver_zunmtr (C function)

S

 	
 	STEDC_MIN_DC_SIZE (C macro)

 	
 	SYTRF_BLOCKSIZE (C macro)

 	SYTRF_SYTF2_SWITCHSIZE (C macro)

T

 	
 	THIN_SVD_SWITCH (C macro)

X

 	
 	xxGQx_BLOCKSIZE (C macro)

 	xxGQx_xxGQx2_SWITCHSIZE (C macro)

 	xxGST_BLOCKSIZE (C macro)

 	xxGxQ_BLOCKSIZE (C macro)

 	
 	xxGxQ_xxGxQ2_SWITCHSIZE (C macro)

 	xxMQx_BLOCKSIZE (C macro)

 	xxMxQ_BLOCKSIZE (C macro)

 	xxTRD_BLOCKSIZE (C macro)

 	xxTRD_xxTD2_SWITCHSIZE (C macro)

 nav.xhtml

 Table of Contents

 		
 Welcome to rocSOLVER’s documentation!

 		
 rocSOLVER User Guide

 		
 Introduction

 		
 Library overview

 		
 Currently implemented functionality

 		
 Building and Installation

 		
 Prerequisites

 		
 Installing from pre-built packages

 		
 Building & installing from source

 		
 Using rocSOLVER

 		
 QR factorization of a single matrix

 		
 QR factorization of a batch of matrices

 		
 Memory Model

 		
 Automatic workspace

 		
 User-managed workspace

 		
 User-owned workspace

 		
 Multi-level Logging

 		
 Logging modes

 		
 Initialization and set-up

 		
 Example code

 		
 Kernel logging

 		
 Multiple host threads

 		
 Clients

 		
 Testing rocSOLVER

 		
 Benchmarking rocSOLVER

 		
 rocSOLVER sample code

 		
 rocSOLVER Library Design Guide

 		
 Introduction

 		
 Batched rocSOLVER

 		
 Tuning rocSOLVER Performance

 		
 geqr2/geqrf and geql2/geqlf functions

 		
 gerq2/gerqf and gelq2/gelqf functions

 		
 org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions

 		
 orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions

 		
 orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions

 		
 ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions

 		
 gebd2/gebrd and labrd functions

 		
 gesvd function

 		
 sytd2/sytrd, hetd2/hetrd and latrd functions

 		
 sygs2/sygst and hegs2/hegst functions

 		
 syevd, heevd and stedc functions

 		
 potf2/potrf functions

 		
 sytf2/sytrf and lasyf functions

 		
 getf2/getrf functions

 		
 getri function

 		
 trtri function

 		
 Contributing Guidelines

 		
 rocSOLVER API

 		
 Types

 		
 Additional types

 		
 LAPACK Auxiliary Functions

 		
 Vector and Matrix manipulations

 		
 Householder reflections

 		
 Bidiagonal forms

 		
 Tridiagonal forms

 		
 Symmetric matrices

 		
 Orthonormal matrices

 		
 Unitary matrices

 		
 LAPACK Functions

 		
 Triangular factorizations

 		
 Orthogonal factorizations

 		
 Problem and matrix reductions

 		
 Linear-systems solvers

 		
 Least-squares solvers

 		
 Symmetric eigensolvers

 		
 Singular value decomposition

 		
 Lapack-like Functions

 		
 Triangular factorizations

 		
 Linear-systems solvers

 		
 Logging Functions and Library Information

 		
 Logging functions

 		
 Library information

 		
 Deprecated

 		
 Types

 		
 Auxiliary functions

 		
 License & Attributions

_static/file.png

_static/minus.png

_static/plus.png

