
rocSOLVER Documentation
Release 3.18.0

Advanced Micro Devices

Feb 17, 2022





CONTENTS

1 rocSOLVER User Guide 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Library overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Currently implemented functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LAPACK auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LAPACK main functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
LAPACK-like functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Building and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Installing from pre-built packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Building & installing from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Using the install.sh script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Manual building and installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Using rocSOLVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 QR factorization of a single matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 QR factorization of a batch of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Strided_batched version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Batched version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Automatic workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 User-managed workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Minimum required size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Using an environment variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Using helper functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 User-owned workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Multi-level Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Logging modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Trace logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bench logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Profile logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.2 Initialization and set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.3 Example code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.4 Kernel logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.5 Multiple host threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.1 Testing rocSOLVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.2 Benchmarking rocSOLVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.3 rocSOLVER sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 rocSOLVER Library Design Guide 27

i



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Batched rocSOLVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Tuning rocSOLVER Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 geqr2/geqrf and geql2/geqlf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
GEQxF_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
GEQxF_GEQx2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 gerq2/gerqf and gelq2/gelqf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
GExQF_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
GExQF_GExQ2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions . . . . . . . . . . . . . . . 31
xxGQx_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
xxGQx_xxGQx2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions . . . . . . . . . . . . . . . 31
xxGxQ_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
xxGxQ_xxGxQ2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions . . . . . . . . . . . . 32
xxMQx_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.6 ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions . . . . . . . . . . . . 32
xxMxQ_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.7 gebd2/gebrd and labrd functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
GEBRD_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
GEBRD_GEBD2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.8 gesvd function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
THIN_SVD_SWITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.9 sytd2/sytrd, hetd2/hetrd and latrd functions . . . . . . . . . . . . . . . . . . . . . . . . . . 34
xxTRD_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
xxTRD_xxTD2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.10 sygs2/sygst and hegs2/hegst functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
xxGST_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.11 syevd, heevd and stedc functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STEDC_MIN_DC_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.12 potf2/potrf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
POTRF_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
POTRF_POTF2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.13 sytf2/sytrf and lasyf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SYTRF_BLOCKSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SYTRF_SYTF2_SWITCHSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.14 getf2/getrf functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETF2_MAX_COLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETF2_MAX_THDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETF2_OPTIM_NGRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETRF_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETRF_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETRF_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GETRF_BATCH_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_BATCH_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_BATCH_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_BATCH_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_BATCH_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRF_NPVT_BATCH_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.15 getri function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



GETRI_MAX_COLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_TINY_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_BATCH_TINY_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_BATCH_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_BATCH_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GETRI_BATCH_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.16 trtri function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_MAX_COLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_BATCH_NUM_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_BATCH_INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TRTRI_BATCH_BLKSIZES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Contributing Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 rocSOLVER API 39
3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Additional types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
rocblas_direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
rocblas_storev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
rocblas_svect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
rocblas_evect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
rocblas_workmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
rocblas_eform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 LAPACK Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Vector and Matrix manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

rocsolver_<type>lacgv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
rocsolver_<type>laswp() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Householder reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rocsolver_<type>larfg() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rocsolver_<type>larft() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
rocsolver_<type>larf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
rocsolver_<type>larfb() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Bidiagonal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
rocsolver_<type>labrd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
rocsolver_<type>bdsqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Tridiagonal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
rocsolver_<type>latrd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
rocsolver_<type>sterf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
rocsolver_<type>steqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
rocsolver_<type>stedc() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.5 Symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
rocsolver_<type>lasyf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.6 Orthonormal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
rocsolver_<type>org2r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
rocsolver_<type>orgqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
rocsolver_<type>orgl2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
rocsolver_<type>orglq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
rocsolver_<type>org2l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
rocsolver_<type>orgql() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



rocsolver_<type>orgbr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
rocsolver_<type>orgtr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
rocsolver_<type>orm2r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
rocsolver_<type>ormqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
rocsolver_<type>orml2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
rocsolver_<type>ormlq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
rocsolver_<type>orm2l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
rocsolver_<type>ormql() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
rocsolver_<type>ormbr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
rocsolver_<type>ormtr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.7 Unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rocsolver_<type>ung2r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
rocsolver_<type>ungqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
rocsolver_<type>ungl2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
rocsolver_<type>unglq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
rocsolver_<type>ung2l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
rocsolver_<type>ungql() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
rocsolver_<type>ungbr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
rocsolver_<type>ungtr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
rocsolver_<type>unm2r() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
rocsolver_<type>unmqr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
rocsolver_<type>unml2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
rocsolver_<type>unmlq() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
rocsolver_<type>unm2l() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
rocsolver_<type>unmql() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
rocsolver_<type>unmbr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
rocsolver_<type>unmtr() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 LAPACK Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.1 Triangular factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

rocsolver_<type>potf2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
rocsolver_<type>potf2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
rocsolver_<type>potf2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
rocsolver_<type>potrf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
rocsolver_<type>potrf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
rocsolver_<type>potrf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
rocsolver_<type>getf2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
rocsolver_<type>getf2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
rocsolver_<type>getf2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
rocsolver_<type>getrf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
rocsolver_<type>getrf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
rocsolver_<type>getrf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
rocsolver_<type>sytf2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
rocsolver_<type>sytf2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
rocsolver_<type>sytf2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
rocsolver_<type>sytrf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
rocsolver_<type>sytrf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
rocsolver_<type>sytrf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3.2 Orthogonal factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
rocsolver_<type>geqr2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
rocsolver_<type>geqr2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
rocsolver_<type>geqr2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
rocsolver_<type>geqrf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
rocsolver_<type>geqrf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
rocsolver_<type>geqrf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iv



rocsolver_<type>gerq2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
rocsolver_<type>gerq2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
rocsolver_<type>gerq2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
rocsolver_<type>gerqf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
rocsolver_<type>gerqf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
rocsolver_<type>gerqf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
rocsolver_<type>geql2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
rocsolver_<type>geql2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
rocsolver_<type>geql2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
rocsolver_<type>geqlf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
rocsolver_<type>geqlf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
rocsolver_<type>geqlf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
rocsolver_<type>gelq2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
rocsolver_<type>gelq2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
rocsolver_<type>gelq2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
rocsolver_<type>gelqf() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
rocsolver_<type>gelqf_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
rocsolver_<type>gelqf_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.3.3 Problem and matrix reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
rocsolver_<type>gebd2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
rocsolver_<type>gebd2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
rocsolver_<type>gebd2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
rocsolver_<type>gebrd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
rocsolver_<type>gebrd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
rocsolver_<type>gebrd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
rocsolver_<type>sytd2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
rocsolver_<type>sytd2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
rocsolver_<type>sytd2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
rocsolver_<type>hetd2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
rocsolver_<type>hetd2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
rocsolver_<type>hetd2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
rocsolver_<type>sytrd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
rocsolver_<type>sytrd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
rocsolver_<type>sytrd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
rocsolver_<type>hetrd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
rocsolver_<type>hetrd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
rocsolver_<type>hetrd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
rocsolver_<type>sygs2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
rocsolver_<type>sygs2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
rocsolver_<type>sygs2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
rocsolver_<type>hegs2() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
rocsolver_<type>hegs2_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
rocsolver_<type>hegs2_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
rocsolver_<type>sygst() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
rocsolver_<type>sygst_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
rocsolver_<type>sygst_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
rocsolver_<type>hegst() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
rocsolver_<type>hegst_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
rocsolver_<type>hegst_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.3.4 Linear-systems solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
rocsolver_<type>trtri() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
rocsolver_<type>trtri_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
rocsolver_<type>trtri_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
rocsolver_<type>getri() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

v



rocsolver_<type>getri_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
rocsolver_<type>getri_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
rocsolver_<type>getrs() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
rocsolver_<type>getrs_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
rocsolver_<type>getrs_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
rocsolver_<type>gesv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
rocsolver_<type>gesv_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
rocsolver_<type>gesv_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
rocsolver_<type>potri() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
rocsolver_<type>potri_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
rocsolver_<type>potri_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
rocsolver_<type>potrs() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
rocsolver_<type>potrs_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
rocsolver_<type>potrs_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
rocsolver_<type>posv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
rocsolver_<type>posv_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
rocsolver_<type>posv_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.3.5 Least-squares solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
rocsolver_<type>gels() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
rocsolver_<type>gels_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
rocsolver_<type>gels_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.3.6 Symmetric eigensolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
rocsolver_<type>syev() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
rocsolver_<type>syev_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
rocsolver_<type>syev_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
rocsolver_<type>heev() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
rocsolver_<type>heev_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
rocsolver_<type>heev_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
rocsolver_<type>syevd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
rocsolver_<type>syevd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
rocsolver_<type>syevd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
rocsolver_<type>heevd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
rocsolver_<type>heevd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
rocsolver_<type>heevd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
rocsolver_<type>sygv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
rocsolver_<type>sygv_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
rocsolver_<type>sygv_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
rocsolver_<type>hegv() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
rocsolver_<type>hegv_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
rocsolver_<type>hegv_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
rocsolver_<type>sygvd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
rocsolver_<type>sygvd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
rocsolver_<type>sygvd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
rocsolver_<type>hegvd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
rocsolver_<type>hegvd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
rocsolver_<type>hegvd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

3.3.7 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
rocsolver_<type>gesvd() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
rocsolver_<type>gesvd_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
rocsolver_<type>gesvd_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

3.4 Lapack-like Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
3.4.1 Triangular factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

rocsolver_<type>getf2_npvt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
rocsolver_<type>getf2_npvt_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

vi



rocsolver_<type>getf2_npvt_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . 248
rocsolver_<type>getrf_npvt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
rocsolver_<type>getrf_npvt_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
rocsolver_<type>getrf_npvt_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . 251

3.4.2 Linear-systems solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
rocsolver_<type>getri_npvt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
rocsolver_<type>getri_npvt_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
rocsolver_<type>getri_npvt_strided_batched() . . . . . . . . . . . . . . . . . . . . . . . . . 254
rocsolver_<type>getri_outofplace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
rocsolver_<type>getri_outofplace_batched() . . . . . . . . . . . . . . . . . . . . . . . . . . 256
rocsolver_<type>getri_outofplace_strided_batched() . . . . . . . . . . . . . . . . . . . . . . 257
rocsolver_<type>getri_npvt_outofplace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
rocsolver_<type>getri_npvt_outofplace_batched() . . . . . . . . . . . . . . . . . . . . . . . 259
rocsolver_<type>getri_npvt_outofplace_strided_batched() . . . . . . . . . . . . . . . . . . . 261

3.5 Logging Functions and Library Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
3.5.1 Logging functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

rocsolver_log_begin() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
rocsolver_log_end() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
rocsolver_log_set_layer_mode() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
rocsolver_log_set_max_levels() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
rocsolver_log_restore_defaults() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
rocsolver_log_write_profile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
rocsolver_log_flush_profile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

3.5.2 Library information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
rocsolver_get_version_string() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
rocsolver_get_version_string_size() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

3.6 Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
3.6.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

rocsolver_int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
rocsolver_handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_storev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
rocsolver_side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
rocsolver_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

3.6.2 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
rocsolver_create_handle() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
rocsolver_destroy_handle() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
rocsolver_set_stream() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
rocsolver_get_stream() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
rocsolver_set_vector() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
rocsolver_get_vector() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
rocsolver_set_matrix() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
rocsolver_get_matrix() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

4 License & Attributions 271

Index 273

vii



viii



rocSOLVER Documentation, Release 3.18.0

Legal Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. In
addition, any stated support is planned and is also subject to change. While every precaution has been taken in the
preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD
is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for
particular purposes, with respect to the operation or use of AMD hardware, software or other products described
herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed
agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

Contents

rocSOLVER’s documentation consists of 3 main Chapters. The User Guide is the starting point for new users of the
library, and a basic reference for current users and/or users of LAPACK. Advanced users and developers who want
to further understand or extend the rocSOLVER library may wish to refer to the Library Design Guide. For a list
of currently implemented routines, and a description of each’s functionality and input and output parameters, see the
rocSOLVER API.

CONTENTS 1



rocSOLVER Documentation, Release 3.18.0

2 CONTENTS



CHAPTER

ONE

ROCSOLVER USER GUIDE

1.1 Introduction

Table of contents

• Library overview

• Currently implemented functionality

– LAPACK auxiliary functions

– LAPACK main functions

– LAPACK-like functions

1.1.1 Library overview

rocSOLVER is an implementation of LAPACK routines on top of the AMD’s open source ROCm platform. roc-
SOLVER is implemented in the HIP programming language and optimized for AMD’s latest discrete GPUs.

1.1.2 Currently implemented functionality

The rocSOLVER library is in the early stages of active development. New features are being continuously added, with
new functionality documented at each release of the ROCm platform.

The following tables summarize the LAPACK functionality implemented for the different supported precisions in
rocSOLVER’s latest release. All LAPACK and LAPACK-like main functions include _batched and _strided_batched
versions. For a complete description of the listed routines, please see the rocSOLVER API document.

LAPACK auxiliary functions

Table 1: Vector and matrix manipulations
Function single double single complex double complex
rocsolver_lacgv x x x x
rocsolver_laswp x x x x

3

https://www.netlib.org/lapack/explore-html/modules.html
https://rocmdocs.amd.com/en/latest/index.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-Release-Notes.html


rocSOLVER Documentation, Release 3.18.0

Table 2: Householder reflections
Function single double single complex double complex
rocsolver_larfg x x x x
rocsolver_larf x x x x
rocsolver_larft x x x x
rocsolver_larfb x x x x

Table 3: Bidiagonal forms
Function single double single complex double complex
rocsolver_labrd x x x x
rocsolver_bdsqr x x x x

Table 4: Tridiagonal forms
Function single double single complex double complex
rocsolver_sterf x x
rocsolver_latrd x x x x
rocsolver_steqr x x x x
rocsolver_stedc x x x x

Table 5: Symmetric matrices
Function single double single complex double complex
rocsolver_lasyf x x x x

Table 6: Orthonormal matrices
Function single double single complex double complex
rocsolver_org2r x x
rocsolver_orgqr x x
rocsolver_orgl2 x x
rocsolver_orglq x x
rocsolver_org2l x x
rocsolver_orgql x x
rocsolver_orgbr x x
rocsolver_orgtr x x
rocsolver_orm2r x x
rocsolver_ormqr x x
rocsolver_orml2 x x
rocsolver_ormlq x x
rocsolver_orm2l x x
rocsolver_ormql x x
rocsolver_ormbr x x
rocsolver_ormtr x x

4 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

Table 7: Unitary matrices
Function single double single complex double complex
rocsolver_ung2r x x
rocsolver_ungqr x x
rocsolver_ungl2 x x
rocsolver_unglq x x
rocsolver_ung2l x x
rocsolver_ungql x x
rocsolver_ungbr x x
rocsolver_ungtr x x
rocsolver_unm2r x x
rocsolver_unmqr x x
rocsolver_unml2 x x
rocsolver_unmlq x x
rocsolver_unm2l x x
rocsolver_unmql x x
rocsolver_unmbr x x
rocsolver_unmtr x x

LAPACK main functions

Table 8: Triangular factorizations
Function single double single complex double complex
rocsolver_potf2 x x x x
rocsolver_potrf x x x x
rocsolver_getf2 x x x x
rocsolver_getrf x x x x
rocsolver_sytf2 x x x x
rocsolver_sytrf x x x x

Table 9: Orthogonal factorizations
Function single double single complex double complex
rocsolver_geqr2 x x x x
rocsolver_geqrf x x x x
rocsolver_gerq2 x x x x
rocsolver_gerqf x x x x
rocsolver_gelq2 x x x x
rocsolver_gelqf x x x x
rocsolver_geql2 x x x x
rocsolver_geqlf x x x x

1.1. Introduction 5



rocSOLVER Documentation, Release 3.18.0

Table 10: Problem and matrix reductions
Function single double single complex double complex
rocsolver_sytd2 x x
rocsolver_sytrd x x
rocsolver_sygs2 x x
rocsolver_sygst x x
rocsolver_hetd2 x x
rocsolver_hetrd x x
rocsolver_hegs2 x x
rocsolver_hegst x x
rocsolver_gebd2 x x x x
rocsolver_gebrd x x x x

Table 11: Linear-systems solvers
Function single double single complex double complex
rocsolver_trtri x x x x
rocsolver_getri x x x x
rocsolver_getrs x x x x
rocsolver_gesv x x x x
rocsolver_potri x x x x
rocsolver_potrs x x x x
rocsolver_posv x x x x

Table 12: Least-square solvers
Function single double single complex double complex
rocsolver_gels x x x x

Table 13: Symmetric eigensolvers
Function single double single complex double complex
rocsolver_syev x x
rocsolver_syevd x x
rocsolver_sygv x x
rocsolver_sygvd x x
rocsolver_heev x x
rocsolver_heevd x x
rocsolver_hegv x x
rocsolver_hegvd x x

Table 14: Singular value decomposition
Function single double single complex double complex
rocsolver_gesvd x x x x

6 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

LAPACK-like functions

Table 15: Triangular factorizations
Function single double single complex double complex
rocsolver_getf2_npvt x x x x
rocsolver_getrf_npvt x x x x

Table 16: Linear-systems solvers
Function single double single complex double complex
rocsolver_getri_npvt x x x x
rocsolver_getri_outofplace x x x x
rocsolver_getri_npvt_outofplace x x x x

1.2 Building and Installation

Table of contents

• Prerequisites

• Installing from pre-built packages

• Building & installing from source

– Using the install.sh script

– Manual building and installation

1.2.1 Prerequisites

rocSOLVER requires a ROCm-enabled platform. For more information, see the ROCm install guide.

rocSOLVER also requires a compatible version of rocBLAS installed on the system. For more information, see the
rocBLAS install guide.

rocBLAS and rocSOLVER are both still under active development, and it is hard to define minimal compatibility
versions. For now, a good rule of thumb is to always use rocSOLVER together with the matching rocBLAS version.
For example, if you want to install rocSOLVER from the ROCm 3.3 release, then be sure that the ROCm 3.3 version
of rocBLAS is also installed; if you are building the rocSOLVER branch tip, then you will need to build and install the
rocBLAS branch tip as well.

1.2. Building and Installation 7

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://rocblas.readthedocs.io/en/master/install.html


rocSOLVER Documentation, Release 3.18.0

1.2.2 Installing from pre-built packages

If you have added the ROCm repositories to your Linux distribution, the latest release version of rocSOLVER can be
installed using a package manager. On Ubuntu, for example, use the commands:

sudo apt-get update
sudo apt-get install rocsolver

1.2.3 Building & installing from source

The rocSOLVER source code is hosted on GitHub. Download the code and checkout the desired branch using:

git clone -b <desired_branch_name> https://github.com/ROCmSoftwarePlatform/rocSOLVER.
→˓git
cd rocSOLVER

To build from source, some external dependencies such as CMake and Python are required. Additionally, if the library
clients are to be built (by default they are not), then LAPACK and GoogleTest will be also required. (The library
clients, rocsolver-test and rocsolver-bench, provide the infrastructure for testing and benchmarking rocSOLVER. For
more details see the clients section of this user’s guide).

Using the install.sh script

It is recommended that the provided install.sh script be used to build and install rocSOLVER. The command

./install.sh --help

gives detailed information on how to use this installation script.

Next, some common use cases are listed:

./install.sh

This command builds rocSOLVER and puts the generated library files, such as headers and librocsolver.so, in
the output directory: rocSOLVER/build/release/rocsolver-install. Other output files from the con-
figuration and building process can also be found in the rocSOLVER/build and rocSOLVER/build/release
directories. It is assumed that all external library dependencies have been installed. It also assumes that the rocBLAS
library is located at /opt/rocm/rocblas.

./install.sh -g

Use the -g flag to build in debug mode. In this case the generated library files will be located at rocSOLVER/
build/debug/rocsolver-install. Other output files from the configuration and building process can also
be found in the rocSOLVER/build and rocSOLVER/build/debug directories.

./install.sh --lib_dir /home/user/rocsolverlib --build_dir buildoutput

Use --lib_dir and --build_dir to change output directories. In this case, for example, the installer will put
the headers and library files in /home/user/rocsolverlib, while the outputs of the configuration and building
processes will be in rocSOLVER/buildoutput and rocSOLVER/buildoutput/release. The selected
output directories must be local, otherwise the user may require sudo privileges. To install rocSOLVER system-wide,
we recommend the use of the -i flag as shown below.

8 Chapter 1. rocSOLVER User Guide

https://github.com/ROCmSoftwarePlatform/rocSOLVER.git


rocSOLVER Documentation, Release 3.18.0

./install.sh --rocblas_dir /alternative/rocblas/location

Use --rocblas_dir to change where the build system will search for the rocBLAS library. In this case, for
example, the installer will look for the rocBLAS library at /alternative/rocblas/location.

./install.sh -s

With the -s flag, the installer will generate a static library (librocsolver.a) instead.

./install.sh -d

With the -d flag, the installer will first install all the external dependencies required by the rocSOLVER library in
/usr/local. This flag only needs to be used once. For subsequent invocations of install.sh it is not necessary to
rebuild the dependencies.

./install.sh -c

With the -c flag, the installer will additionally build the library clients rocsolver-bench and
rocsolver-test. The binaries will be located at rocSOLVER/build/release/clients/staging. It
is assumed that all external dependencies for the client have been installed.

./install.sh -dc

By combining the -c and -d flags, the installer will also install all the external dependencies required by rocSOLVER
clients. Again, the -d flag only needs to be used once.

./install.sh -i

With the -i flag, the installer will additionally generate a pre-built rocSOLVER package and install it, using a suitable
package manager, at the standard location: /opt/rocm/rocsolver. This is the preferred approach to install
rocSOLVER on a system, as it will allow the library to be safely removed using the package manager.

./install.sh -p

With the -p flag, the installer will also generate the rocSOLVER package, but it will not be installed.

./install.sh -i --install_dir /package/install/path

When generating a package, use --install_dir to change the directory where it will be installed. In this case, for
example, the rocSOLVER package will be installed at /package/install/path.

Manual building and installation

Manual installation of all the external dependencies is not an easy task. Get more information on how to install each
dependency at the corresponding documentation sites:

• CMake (version 3.16 is recommended).

• LAPACK (which internally depends on a Fortran compiler), and

• GoogleTest

• fmt

Once all dependencies are installed (including ROCm and rocBLAS), rocSOLVER can be manually built using a com-
bination of CMake and Make commands. Using CMake options can provide more flexibility in tailoring the building
and installation process. Here we provide a list of examples of common use cases (see the CMake documentation for
more information on CMake options).

1.2. Building and Installation 9

https://cmake.org/
https://github.com/Reference-LAPACK/lapack-release
https://github.com/google/googletest
https://github.com/fmtlib/fmt


rocSOLVER Documentation, Release 3.18.0

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install ../..
make install

This is equivalent to ./install.sh.

mkdir -p buildoutput/release && cd buildoutput/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=/home/user/rocsolverlib ../..
make install

This is equivalent to ./install.sh --lib_dir /home/user/rocsolverlib --build_dir
buildoutput.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -Drocblas_DIR=/
→˓alternative/rocblas/location ../..
make install

This is equivalent to ./install.sh --rocblas_dir /alternative/rocblas/location.

mkdir -p build/debug && cd build/debug
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCMAKE_BUILD_
→˓TYPE=Debug ../..
make install

This is equivalent to ./install.sh -g.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DBUILD_SHARED_
→˓LIBS=OFF ../..
make install

This is equivalent to ./install.sh -s.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DBUILD_
→˓CLIENTS_TESTS=ON -DBUILD_CLIENTS_BENCHMARKS=ON ../..
make install

This is equivalent to ./install.sh -c.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCPACK_SET_
→˓DESTDIR=OFF -DCPACK_PACKAGING_INSTALL_PREFIX=/opt/rocm ../..
make install
make package

This is equivalent to ./install.sh -p.

mkdir -p build/release && cd build/release
CXX=/opt/rocm/bin/hipcc cmake -DCMAKE_INSTALL_PREFIX=rocsolver-install -DCPACK_SET_
→˓DESTDIR=OFF -DCPACK_PACKAGING_INSTALL_PREFIX=/package/install/path ../..
make install
make package
sudo dpkg -i rocsolver[-\_]*.deb

On an Ubuntu system, for example, this would be equivalent to ./install.sh -i --install_dir /
package/install/path.

10 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

1.3 Using rocSOLVER

Once installed, rocSOLVER can be used just like any other library with a C API. The header file will need to be
included in the user code, and both the rocBLAS and rocSOLVER shared libraries will become link-time and run-time
dependencies for the user application.

Next, some examples are used to illustrate the basic use of rocSOLVER API and rocSOLVER batched API.

Table of contents

• QR factorization of a single matrix

• QR factorization of a batch of matrices

– Strided_batched version

– Batched version

1.3.1 QR factorization of a single matrix

The following code snippet uses rocSOLVER to compute the QR factorization of a general m-by-n real matrix in
double precision. For a full description of the used rocSOLVER routine, see the API documentation here: roc-
solver_dgeqrf().

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorization of a matrix on the GPU

double *create_example_matrix(rocblas_int *M_out,
rocblas_int *N_out,
rocblas_int *lda_out) {

// a *very* small example input; not a very efficient use of the API
const double A[3][3] = { { 12, -51, 4},

{ 6, 167, -68},
{ -4, 24, -41} };

const rocblas_int M = 3;
const rocblas_int N = 3;
const rocblas_int lda = 3;

*M_out = M;

*N_out = N;

*lda_out = lda;
// note: rocsolver matrices must be stored in column major format,
// i.e. entry (i,j) should be accessed by hA[i + j*lda]
double *hA = (double*)malloc(sizeof(double)*lda*N);
for (size_t i = 0; i < M; ++i) {
for (size_t j = 0; j < N; ++j) {
// copy A (2D array) into hA (1D array, column-major)
hA[i + j*lda] = A[i][j];

}
}
return hA;

}

(continues on next page)

1.3. Using rocSOLVER 11



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

// We use rocsolver_dgeqrf to factor a real M-by-N matrix, A.
// See https://rocsolver.readthedocs.io/en/latest/api_lapackfunc.html#c.rocsolver_
→˓dgeqrf
// and https://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_
→˓ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html
int main() {
rocblas_int M; // rows
rocblas_int N; // cols
rocblas_int lda; // leading dimension
double *hA = create_example_matrix(&M, &N, &lda); // input matrix on CPU

// let's print the input matrix, just to see it
printf("A = [\n");
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% .3f ", hA[i + j*lda]);

}
printf(";\n");

}
printf("]\n");

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);

// Some rocsolver functions may trigger rocblas to load its GEMM kernels.
// You can preload the kernels by explicitly invoking rocblas_initialize
// (e.g., to exclude one-time initialization overhead from benchmarking).

// preload rocBLAS GEMM kernels (optional)
// rocblas_initialize();

// calculate the sizes of our arrays
size_t size_A = lda * (size_t)N; // count of elements in matrix A
size_t size_piv = (M < N) ? M : N; // count of Householder scalars

// allocate memory on GPU
double *dA, *dIpiv;
hipMalloc((void**)&dA, sizeof(double)*size_A);
hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

// copy data to GPU
hipMemcpy(dA, hA, sizeof(double)*size_A, hipMemcpyHostToDevice);

// compute the QR factorization on the GPU
rocsolver_dgeqrf(handle, M, N, dA, lda, dIpiv);

// copy the results back to CPU
double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on

→˓CPU
hipMemcpy(hA, dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);

// the results are now in hA and hIpiv
// we can print some of the results if we want to see them

(continues on next page)

12 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

printf("R = [\n");
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% .3f ", (i <= j) ? hA[i + j*lda] : 0);

}
printf(";\n");

}
printf("]\n");

// clean up
free(hIpiv);
hipFree(dA);
hipFree(dIpiv);
free(hA);
rocblas_destroy_handle(handle);

}

The exact command used to compile the example above may vary depending on the system environment, but here is a
typical example:

/opt/rocm/bin/hipcc -I/opt/rocm/include -c example.c
/opt/rocm/bin/hipcc -o example -L/opt/rocm/lib -lrocsolver -lrocblas example.o

1.3.2 QR factorization of a batch of matrices

One of the advantages of using GPUs is the ability to execute in parallel many operations of the same type but on
different data sets. Based on this idea, rocSOLVER and rocBLAS provide a batch version of most of their routines.
These batch versions allow the user to execute the same operation on a set of different matrices and/or vectors with
a single library call. For more details on the approach to batch functionality followed in rocSOLVER, see Batched
rocSOLVER.

Strided_batched version

The following code snippet uses rocSOLVER to compute the QR factorization of a series of general m-by-n real ma-
trices in double precision. The matrices must be stored in contiguous memory locations on the GPU, and are accessed
by a pointer to the first matrix and a stride value that gives the separation between one matrix and the next. For a full
description of the used rocSOLVER routine, see the API documentation here: rocsolver_dgeqrf_strided_batched().

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorizations of an array of matrices on the GPU

double *create_example_matrices(rocblas_int *M_out,
rocblas_int *N_out,
rocblas_int *lda_out,
rocblas_stride *strideA_out,
rocblas_int *batch_count_out) {

const double A[2][3][3] = {
// First input matrix

(continues on next page)

1.3. Using rocSOLVER 13



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

{ { 12, -51, 4},
{ 6, 167, -68},
{ -4, 24, -41} },

// Second input matrix
{ { 3, -12, 11},

{ 4, -46, -2},
{ 0, 5, 15} } };

const rocblas_int M = 3;
const rocblas_int N = 3;
const rocblas_int lda = 3;
const rocblas_stride strideA = lda * N;
const rocblas_int batch_count = 2;

*M_out = M;

*N_out = N;

*lda_out = lda;

*strideA_out = strideA;

*batch_count_out = batch_count;

// allocate space for input matrix data on CPU
double *hA = (double*)malloc(sizeof(double)*strideA*batch_count);

// copy A (3D array) into hA (1D array, column-major)
for (size_t b = 0; b < batch_count; ++b)
for (size_t i = 0; i < M; ++i)
for (size_t j = 0; j < N; ++j)
hA[i + j*lda + b*strideA] = A[b][i][j];

return hA;
}

// Use rocsolver_dgeqrf_strided_batched to factor an array of real M-by-N matrices.
int main() {
rocblas_int M; // rows
rocblas_int N; // cols
rocblas_int lda; // leading dimension
rocblas_stride strideA; // stride from start of one matrix to the next
rocblas_int batch_count; // number of matricies
double *hA = create_example_matrices(&M, &N, &lda, &strideA, &batch_count);

// print the input matrices
for (size_t b = 0; b < batch_count; ++b) {
printf("A[%zu] = [\n", b);
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% 4.f ", hA[i + j*lda + strideA*b]);

}
printf(";\n");

}
printf("]\n");

}

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);

(continues on next page)

14 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

// preload rocBLAS GEMM kernels (optional)
// rocblas_initialize();

// calculate the sizes of our arrays
size_t size_A = strideA * (size_t)batch_count; // elements in array for matrices
rocblas_stride strideP = (M < N) ? M : N; // stride of Householder scalar

→˓sets
size_t size_piv = strideP * (size_t)batch_count; // elements in array for

→˓Householder scalars

// allocate memory on GPU
double *dA, *dIpiv;
hipMalloc((void**)&dA, sizeof(double)*size_A);
hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

// copy data to GPU
hipMemcpy(dA, hA, sizeof(double)*size_A, hipMemcpyHostToDevice);

// compute the QR factorizations on the GPU
rocsolver_dgeqrf_strided_batched(handle, M, N, dA, lda, strideA, dIpiv, strideP,

→˓batch_count);

// copy the results back to CPU
double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on

→˓CPU
hipMemcpy(hA, dA, sizeof(double)*size_A, hipMemcpyDeviceToHost);
hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);

// the results are now in hA and hIpiv
// print some of the results
for (size_t b = 0; b < batch_count; ++b) {
printf("R[%zu] = [\n", b);
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% 4.f ", (i <= j) ? hA[i + j*lda + strideA*b] : 0);

}
printf(";\n");

}
printf("]\n");

}

// clean up
free(hIpiv);
hipFree(dA);
hipFree(dIpiv);
free(hA);
rocblas_destroy_handle(handle);

}

1.3. Using rocSOLVER 15



rocSOLVER Documentation, Release 3.18.0

Batched version

The following code snippet uses rocSOLVER to compute the QR factorization of a series of general m-by-n real
matrices in double precision. The matrices do not need to be in contiguous memory locations on the GPU, and will be
accessed by an array of pointers. For a full description of the used rocSOLVER routine, see the API documentation
here: rocsolver_dgeqrf_batched.

#include <hip/hip_runtime_api.h> // for hip functions
#include <rocsolver.h> // for all the rocsolver C interfaces and type declarations
#include <stdio.h> // for printf
#include <stdlib.h> // for malloc

// Example: Compute the QR Factorizations of a batch of matrices on the GPU

double **create_example_matrices(rocblas_int *M_out,
rocblas_int *N_out,
rocblas_int *lda_out,
rocblas_int *batch_count_out) {

// a small example input
const double A[2][3][3] = {
// First input matrix
{ { 12, -51, 4},

{ 6, 167, -68},
{ -4, 24, -41} },

// Second input matrix
{ { 3, -12, 11},

{ 4, -46, -2},
{ 0, 5, 15} } };

const rocblas_int M = 3;
const rocblas_int N = 3;
const rocblas_int lda = 3;
const rocblas_int batch_count = 2;

*M_out = M;

*N_out = N;

*lda_out = lda;

*batch_count_out = batch_count;

// allocate space for input matrix data on CPU
double **hA = (double**)malloc(sizeof(double*)*batch_count);
hA[0] = (double*)malloc(sizeof(double)*lda*N);
hA[1] = (double*)malloc(sizeof(double)*lda*N);

for (size_t b = 0; b < batch_count; ++b)
for (size_t i = 0; i < M; ++i)
for (size_t j = 0; j < N; ++j)
hA[b][i + j*lda] = A[b][i][j];

return hA;
}

// Use rocsolver_dgeqrf_batched to factor a batch of real M-by-N matrices.
int main() {
rocblas_int M; // rows
rocblas_int N; // cols
rocblas_int lda; // leading dimension
rocblas_int batch_count; // number of matricies

(continues on next page)

16 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

double **hA = create_example_matrices(&M, &N, &lda, &batch_count);

// print the input matrices
for (size_t b = 0; b < batch_count; ++b) {
printf("A[%zu] = [\n", b);
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% 4.f ", hA[b][i + j*lda]);

}
printf(";\n");

}
printf("]\n");

}

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);

// preload rocBLAS GEMM kernels (optional)
// rocblas_initialize();

// calculate the sizes of the arrays
size_t size_A = lda * (size_t)N; // count of elements in each matrix A
rocblas_stride strideP = (M < N) ? M : N; // stride of Householder scalar sets
size_t size_piv = strideP * (size_t)batch_count; // elements in array for

→˓Householder scalars

// allocate memory on the CPU for an array of pointers,
// then allocate memory for each matrix on the GPU.
double **A = (double**)malloc(sizeof(double*)*batch_count);
for (rocblas_int b = 0; b < batch_count; ++b)
hipMalloc((void**)&A[b], sizeof(double)*size_A);

// allocate memory on GPU for the array of pointers and Householder scalars
double **dA, *dIpiv;
hipMalloc((void**)&dA, sizeof(double*)*batch_count);
hipMalloc((void**)&dIpiv, sizeof(double)*size_piv);

// copy each matrix to the GPU
for (rocblas_int b = 0; b < batch_count; ++b)
hipMemcpy(A[b], hA[b], sizeof(double)*size_A, hipMemcpyHostToDevice);

// copy the array of pointers to the GPU
hipMemcpy(dA, A, sizeof(double*)*batch_count, hipMemcpyHostToDevice);

// compute the QR factorizations on the GPU
rocsolver_dgeqrf_batched(handle, M, N, dA, lda, dIpiv, strideP, batch_count);

// copy the results back to CPU
double *hIpiv = (double*)malloc(sizeof(double)*size_piv); // householder scalars on

→˓CPU
hipMemcpy(hIpiv, dIpiv, sizeof(double)*size_piv, hipMemcpyDeviceToHost);
for (rocblas_int b = 0; b < batch_count; ++b)
hipMemcpy(hA[b], A[b], sizeof(double)*size_A, hipMemcpyDeviceToHost);

// the results are now in hA and hIpiv
(continues on next page)

1.3. Using rocSOLVER 17



rocSOLVER Documentation, Release 3.18.0

(continued from previous page)

// print some of the results
for (size_t b = 0; b < batch_count; ++b) {
printf("R[%zu] = [\n", b);
for (size_t i = 0; i < M; ++i) {
printf(" ");
for (size_t j = 0; j < N; ++j) {
printf("% 4.f ", (i <= j) ? hA[b][i + j*lda] : 0);

}
printf(";\n");

}
printf("]\n");

}

// clean up
free(hIpiv);
for (rocblas_int b = 0; b < batch_count; ++b)
free(hA[b]);

free(hA);
for (rocblas_int b = 0; b < batch_count; ++b)
hipFree(A[b]);

free(A);
hipFree(dA);
hipFree(dIpiv);
rocblas_destroy_handle(handle);

}

1.4 Memory Model

Almost all LAPACK and rocSOLVER routines require workspace memory in order to compute their results. In contrast
to LAPACK, however, pointers to the workspace are not explicitly passed to rocSOLVER functions as arguments;
instead, they are managed behind-the-scenes using a configurable device memory model.

rocSOLVER makes use of and is integrated with rocBLAS’s memory model. Workspace memory, and the scheme
used to manage it, is tracked on a per-rocblas_handle basis, and the same functionality that is used to manipulate
rocBLAS’s workspace memory can and will also affect rocSOLVER’s workspace memory.

There are 4 schemes for device memory management:

• Automatic (managed by rocSOLVER/rocBLAS): The default scheme. Device memory persists between func-
tion calls and will be automatically reallocated if more memory is required by a function.

• User-managed (preallocated): The desired workspace size is specified by the user as an environment variable
before handle creation, and cannot be altered after the handle is created.

• User-managed (manual): The desired workspace size can be manipulated using rocBLAS helper functions.

• User-owned: The user manually allocates device memory and calls a rocBLAS helper function to use it as the
workspace.

Table of contents

• Automatic workspace

• User-managed workspace

18 Chapter 1. rocSOLVER User Guide

https://rocblas.readthedocs.io/en/latest/device_memory.html


rocSOLVER Documentation, Release 3.18.0

– Minimum required size

– Using an environment variable

– Using helper functions

• User-owned workspace

1.4.1 Automatic workspace

By default, rocSOLVER will automatically allocate device memory to be used as internal workspace using the
rocBLAS memory model, and will increase the amount of allocated memory as needed by rocSOLVER functions.
If this scheme is in use, the function rocblas_is_managing_device_memory will return true. In or-
der to re-enable this scheme if it is not in use, a nullptr or zero size can be passed to the helper functions
rocblas_set_device_memory_size or rocblas_set_workspace. For more details on these rocBLAS
APIs, see the rocBLAS documentation.

This scheme has the disadvantage that automatic reallocation is synchronizing, and the user cannot control when this
synchronization happens.

1.4.2 User-managed workspace

Alternatively, the user can manually specify an amount of memory to be allocated by rocSOLVER/rocBLAS. This
allows the user to control when and if memory is reallocated and synchronization occurs. However, function calls will
fail if there is not enough allocated memory.

Minimum required size

In order to choose an appropriate amount of memory to allocate, rocSOLVER can be queried to determine
the minimum amount of memory required for functions to complete. The query can be started by call-
ing rocblas_start_device_memory_size_query, followed by calls to the desired functions with ap-
propriate problem sizes (a null pointer can be passed to the device pointer arguments). A final call to
rocblas_stop_device_memory_size_query will return the minimum required size.

For example, the following code snippet will return the memory size required to solve a 1024*1024 linear system with
1 right-hand side (involving calls to getrf and getrs):

size_t memory_size;
rocblas_start_device_memory_size_query(handle);
rocsolver_dgetrf(handle, 1024, 1024, nullptr, lda, nullptr, nullptr);
rocsolver_dgetrs(handle, rocblas_operation_none, 1024, 1, nullptr, lda, nullptr,
→˓nullptr, ldb);
rocblas_stop_device_memory_size_query(handle, &memory_size);

For more details on the rocBLAS APIs, see the rocBLAS documentation.

1.4. Memory Model 19

https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions
https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions


rocSOLVER Documentation, Release 3.18.0

Using an environment variable

The desired workspace size can be provided before creation of the rocblas_handle by setting the value of envi-
ronment variable ROCBLAS_DEVICE_MEMORY_SIZE. If this variable is unset or the value is == 0, then it will be
ignored. Note that a workspace size set in this way cannot be changed once the handle has been created.

Using helper functions

Another way to set the desired workspace size is by using the helper function
rocblas_set_device_memory_size. This function is called after handle creation and can be called
multiple times; however, it is recommended to first synchronize the handle stream if a rocSOLVER or rocBLAS
routine has already been called. For example:

hipStream_t stream;
rocblas_get_stream(handle, &stream);
hipStreamSynchronize(stream);

rocblas_set_device_memory_size(handle, memory_size);

For more details on the rocBLAS APIs, see the rocBLAS documentation.

1.4.3 User-owned workspace

Finally, the user may opt to manage the workspace memory manually using HIP. By calling the function
rocblas_set_workspace, the user may pass a pointer to device memory to rocBLAS that will be used as the
workspace for rocSOLVER. For example:

void* device_memory;
hipMalloc(&device_memory, memory_size);
rocblas_set_workspace(handle, device_memory, memory_size);

// perform computations here

rocblas_set_workspace(handle, nullptr, 0);
hipFree(device_memory);

For more details on the rocBLAS APIs, see the rocBLAS documentation.

1.5 Multi-level Logging

Similar to rocBLAS logging, rocSOLVER provides logging facilities that can be used to output information on roc-
SOLVER function calls. Three modes of logging are supported: trace logging, bench logging, and profile logging.

Note that performance will degrade when logging is enabled.

Table of contents

• Logging modes

– Trace logging

– Bench logging

20 Chapter 1. rocSOLVER User Guide

https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions
https://rocblas.readthedocs.io/en/latest/functions.html#device-memory-functions
https://rocblas.readthedocs.io/en/latest/logging.html


rocSOLVER Documentation, Release 3.18.0

– Profile logging

• Initialization and set-up

• Example code

• Kernel logging

• Multiple host threads

1.5.1 Logging modes

Trace logging

Trace logging outputs a line each time an internal rocSOLVER or rocBLAS routine is called, outputting the function
name and the values of its arguments (excluding stride arguments). The maximum depth of nested function calls that
can appear in the log is specified by the user.

Bench logging

Bench logging outputs a line each time a public rocSOLVER routine is called (excluding auxiliary library functions),
outputting a line that can be used with the executable rocsolver-bench to call the function with the same size
arguments.

Profile logging

Profile logging, upon calling rocsolver_log_write_profile or rocsolver_log_flush_profile, or
terminating the logging session using rocsolver_log_end, will output statistics on each called internal roc-
SOLVER and rocBLAS routine. These include the number of times each function was called, the total program
runtime occupied by the function, and the total program runtime occupied by its nested function calls. As with trace
logging, the maximum depth of nested output is specified by the user. Note that, when profile logging is enabled, the
stream will be synchronized after every internal function call.

1.5.2 Initialization and set-up

In order to use rocSOLVER’s logging facilities, the user must first call rocsolver_log_begin in order to
allocate the internal data structures used for logging and begin the logging session. The user may then spec-
ify a layer mode and max level depth, either programmatically using rocsolver_log_set_layer_mode,
rocsolver_log_set_max_levels, or by setting the corresponding environment variables.

The layer mode specifies which logging type(s) are activated, and can be rocblas_layer_mode_none,
rocblas_layer_mode_log_trace, rocblas_layer_mode_log_bench,
rocblas_layer_mode_log_profile, or a bitwise combination of these. The max level depth specifies
the default maximum depth of nested function calls that may appear in the trace and profile logging.

Both the default layer mode and max level depth can be specified using environment variables.

• ROCSOLVER_LAYER

• ROCSOLVER_LEVELS

If these variables are not set, the layer mode will default to rocblas_layer_mode_none and the max level depth
will default to 1. These defaults can be restored by calling the function rocsolver_log_restore_defaults.

ROCSOLVER_LAYER is a bitwise OR of zero or more bit masks as follows:

1.5. Multi-level Logging 21



rocSOLVER Documentation, Release 3.18.0

• If ROCSOLVER_LAYER is not set, then there is no logging

• If (ROCSOLVER_LAYER & 1) != 0, then there is trace logging

• If (ROCSOLVER_LAYER & 2) != 0, then there is bench logging

• If (ROCSOLVER_LAYER & 4) != 0, then there is profile logging

Three environment variables can set the full path name for a log file:

• ROCSOLVER_LOG_TRACE_PATH sets the full path name for trace logging

• ROCSOLVER_LOG_BENCH_PATH sets the full path name for bench logging

• ROCSOLVER_LOG_PROFILE_PATH sets the full path name for profile logging

If one of these environment variables is not set, then ROCSOLVER_LOG_PATH sets the full path for the corresponding
logging, if it is set. If neither the above nor ROCSOLVER_LOG_PATH are set, then the corresponding logging output
is streamed to standard error.

The results of profile logging, if enabled, can be printed using rocsolver_log_write_profile or
rocsolver_log_flush_profile. Once logging facilities are no longer required (e.g. at program termina-
tion), the user must call rocsolver_log_end to free the data structures used for logging. If the profile log has not
been flushed beforehand, then rocsolver_log_end will also output the results of profile logging.

For more details on the mentioned logging functions, see the Logging functions section on the rocSOLVER API
document.

1.5.3 Example code

Code examples that illustrate the use of rocSOLVER’s multi-level logging facilities can be found in this section or in
the example_logging.cpp file in the clients/samples directory.

The following example shows some basic use: enabling trace and profile logging, and setting the max depth for their
output.

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);
rocsolver_log_begin();

// begin trace logging and profile logging (max depth = 5)
rocsolver_log_set_layer_mode(rocblas_layer_mode_log_trace | rocblas_layer_mode_log_
→˓profile);
rocsolver_log_set_max_levels(5);

// call rocSOLVER functions...

// terminate logging and print profile results
rocsolver_log_flush_profile();
rocsolver_log_end();
rocblas_destroy_handle(handle);

Alternatively, users may control which logging modes are enabled by using environment variables. The benefit of
this approach is that the program does not need to be recompiled if a different logging environment is desired. This
requires that rocsolver_log_set_layer_mode and rocsolver_log_set_max_levels are not called
in the code, e.g.

22 Chapter 1. rocSOLVER User Guide



rocSOLVER Documentation, Release 3.18.0

// initialization
rocblas_handle handle;
rocblas_create_handle(&handle);
rocsolver_log_begin();

// call rocSOLVER functions...

// termination
rocsolver_log_end();
rocblas_destroy_handle(handle);

The user may then set the desired logging modes and max depth on the command line as follows:

export ROCSOLVER_LAYER=5
export ROCSOLVER_LEVELS=5

1.5.4 Kernel logging

Kernel launches from within rocSOLVER can be added to the trace and profile logs using an additional layer mode flag.
The flag rocblas_layer_mode_ex_log_kernel can be combined with rocblas_layer_mode flags and
passed to rocsolver_log_set_layer_mode in order to enable kernel logging. Alternatively, the environment
variable ROCSOLVER_LAYER can be set such that (ROCSOLVER_LAYER & 16) != 0:

• If (ROCSOLVER_LAYER & 17) != 0, then kernel calls will be added to the trace log

• If (ROCSOLVER_LAYER & 20) != 0, then kernel calls will be added to the profile log

1.5.5 Multiple host threads

The logging facilities for rocSOLVER assume that each rocblas_handle is associated with at most one
host thread. When using rocSOLVER’s multi-level logging setup, it is recommended to create a separate
rocblas_handle for each host thread.

The rocsolver_log_* functions are not thread-safe. Calling a log function while any rocSOLVER routine is executing
on another host thread will result in undefined behaviour. Once enabled, logging data collection is thread-safe. How-
ever, note that trace logging will likely result in garbled trace trees if rocSOLVER routines are called from multiple
host threads.

1.6 Clients

rocSOLVER has an infrastructure for testing and benchmarking similar to that of rocBLAS, as well as sample code
illustrating basic use of the library.

Client binaries are not built by default; they require specific flags to be passed to the install script or CMake
system. If the -c flag is passed to install.sh, the client binaries will be located in the directory
<rocsolverDIR>/build/release/clients/staging. If both the -c and -g flags are passed to
install.sh, the client binaries will be located in <rocsolverDIR>/build/debug/clients/staging.
If the -DBUILD_CLIENTS_TESTS=ON flag, the -DBUILD_CLIENTS_BENCHMARKS=ON flag, and/or the
-DBUILD_CLIENTS_SAMPLES=ON flag are passed to the CMake system, the relevant client binaries will normally
be located in the directory <rocsolverDIR>/build/clients/staging. See the Building and installation
section of the User Guide for more information on building the library and its clients.

1.6. Clients 23

https://rocblas.readthedocs.io/en/latest/clients.html


rocSOLVER Documentation, Release 3.18.0

Table of contents

• Testing rocSOLVER

• Benchmarking rocSOLVER

• rocSOLVER sample code

1.6.1 Testing rocSOLVER

The rocsolver-test client executes a suite of Google tests (gtest) that verifies the correct functioning of the
library. The results computed by rocSOLVER, given random input data, are normally compared with the results
computed by NETLib LAPACK on the CPU, or tested implicitly in the context of the solved problem. It will be built
if the -c flag is passed to install.sh or if the -DBUILD_CLIENTS_TESTS=ON flag is passed to the CMake
system.

Calling the rocSOLVER gtest client with the --help flag

./rocsolver-test --help

returns information on different flags that control the behavior of the gtests.

One of the most useful flags is the --gtest_filter flag, which allows the user to choose which tests to run from
the suite. For example, the following command will run the tests for only geqrf:

./rocsolver-test --gtest_filter=*GEQRF*

Note that rocSOLVER’s tests are divided into two separate groupings: checkin_lapack and daily_lapack.
Tests in the checkin_lapack group are small and quick to execute, and verify basic correctness and error handling.
Tests in the daily_lapack group are large and slower to execute, and verify correctness of large problem sizes.
Users may run one test group or the other using --gtest_filter, e.g.

./rocsolver-test --gtest_filter=*checkin_lapack*

./rocsolver-test --gtest_filter=*daily_lapack*

1.6.2 Benchmarking rocSOLVER

The rocsolver-bench client runs any rocSOLVER function with random data of the specified dimen-
sions. It compares basic performance information (i.e. execution times) between NETLib LAPACK on the
CPU and rocSOLVER on the GPU. It will be built if the -c flag is passed to install.sh or if the
-DBUILD_CLIENTS_BENCHMARKS=ON flag is passed to the CMake system.

Calling the rocSOLVER bench client with the --help flag

./rocsolver-bench --help

returns information on the different parameters and flags that control the behavior of the benchmark client.

Two of the most important flags for rocsolver-bench are the -f and -r flags. The -f (or --function) flag
allows the user to select which function to benchmark. The -r (or --precision) flag allows the user to select
the data precision for the function, and can be one of s (single precision), d (double precision), c (single precision
complex), or z (double precision complex).

The non-pointer arguments for a function can be passed to rocsolver-bench by using the argument name as a
flag (see the rocSOLVER API document for information on the function arguments and their names). For example, the
function rocsolver_dgeqrf_strided_batched has the following method signature:

24 Chapter 1. rocSOLVER User Guide

https://github.com/google/googletest
https://www.netlib.org/lapack/
https://www.netlib.org/lapack/


rocSOLVER Documentation, Release 3.18.0

rocblas_status
rocsolver_dgeqrf_strided_batched(rocblas_handle handle,

const rocblas_int m,
const rocblas_int n,
double* A,
const rocblas_int lda,
const rocblas_stride strideA,
double* ipiv,
const rocblas_stride strideP,
const rocblas_int batch_count);

A call to rocsolver-bench that runs this function on a batch of one hundred 30x30 matrices could look like this:

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 -n 30 --lda 30 --strideA 900 --
→˓strideP 30 --batch_count 100

Generally, rocsolver-bench will attempt to provide or calculate a suitable default value for these arguments,
though at least one size argument must always be specified by the user. Functions that take m and n as arguments
typically require m to be provided, and a square matrix will be assumed. For example, the previous command is
equivalent to:

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100

Other useful benchmarking options include the --perf flag, which will disable the LAPACK computation and only
time and print the rocSOLVER performance result; the -i (or --iters) flag, which indicates the number of times
to run the GPU timing loop (the performance result would be the average of all the runs); and the --profile flag,
which enables profile logging indicating the maximum depth of the nested output.

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --perf 1

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --iters 20

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --profile 5

In addition to the benchmarking functionality, the rocSOLVER bench client can also provide the norm of the error
in the computations when the -v (or --verify) flag is used; and return the amount of device memory required as
workspace for the given function, if the --mem_query flag is passed.

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --verify 1

./rocsolver-bench -f geqrf_strided_batched -r d -m 30 --batch_count 100 --mem_query 1

1.6.3 rocSOLVER sample code

rocSOLVER’s sample programs provide illustrative examples of how to work with the rocSOLVER library. They will
be built if the -c flag is passed to install.sh or if the -DBUILD_CLIENTS_SAMPLES=ON flag is passed to the
CMake system.

Currently, sample code exists to demonstrate the following:

• Basic use of rocSOLVER in C, C++, and Fortran, using the example of rocsolver_geqrf ;

• Use of batched and strided_batched functions, using rocsolver_geqrf_batched and roc-
solver_geqrf_strided_batched as examples;

• Use of rocSOLVER with the Heterogeneous Memory Management (HMM) model; and

• Use of rocSOLVER’s multi-level logging functionality.

1.6. Clients 25



rocSOLVER Documentation, Release 3.18.0

26 Chapter 1. rocSOLVER User Guide



CHAPTER

TWO

ROCSOLVER LIBRARY DESIGN GUIDE

2.1 Introduction

More to come later. . .

2.2 Batched rocSOLVER

More to come later. . .

2.3 Tuning rocSOLVER Performance

Some compile-time parameters in rocSOLVER can be modified to tune the performance of the library functions in a
given context (e.g., for a particular matrix size or shape). A description of these tunable constants is presented in this
section.

To facilitate the description, the constants are grouped by the family of functions they affect. Some aspects of the
involved algorithms are also depicted here for the sake of clarity; however, this section is not intended to be a re-
view of the well-known methods for different matrix computations. These constants are specific to the rocSOLVER
implementation and are only described within that context.

All described constants can be found in library/src/include/ideal_sizes.hpp. These are not run-time
arguments for the associated API functions. The library must be rebuilt from source for any change to take effect.

Warning: The effect of changing a tunable constant on the performance of the library is difficult to predict,
and such analysis is beyond the scope of this document. Advanced users and developers tuning these values
should proceed with caution. New values may (or may not) improve or worsen the performance of the associated
functions.

Table of contents

• geqr2/geqrf and geql2/geqlf functions

– GEQxF_BLOCKSIZE

– GEQxF_GEQx2_SWITCHSIZE

• gerq2/gerqf and gelq2/gelqf functions

27



rocSOLVER Documentation, Release 3.18.0

– GExQF_BLOCKSIZE

– GExQF_GExQ2_SWITCHSIZE

• org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions

– xxGQx_BLOCKSIZE

– xxGQx_xxGQx2_SWITCHSIZE

• orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions

– xxGxQ_BLOCKSIZE

– xxGxQ_xxGxQ2_SWITCHSIZE

• orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions

– xxMQx_BLOCKSIZE

• ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions

– xxMxQ_BLOCKSIZE

• gebd2/gebrd and labrd functions

– GEBRD_BLOCKSIZE

– GEBRD_GEBD2_SWITCHSIZE

• gesvd function

– THIN_SVD_SWITCH

• sytd2/sytrd, hetd2/hetrd and latrd functions

– xxTRD_BLOCKSIZE

– xxTRD_xxTD2_SWITCHSIZE

• sygs2/sygst and hegs2/hegst functions

– xxGST_BLOCKSIZE

• syevd, heevd and stedc functions

– STEDC_MIN_DC_SIZE

• potf2/potrf functions

– POTRF_BLOCKSIZE

– POTRF_POTF2_SWITCHSIZE

• sytf2/sytrf and lasyf functions

– SYTRF_BLOCKSIZE

– SYTRF_SYTF2_SWITCHSIZE

• getf2/getrf functions

– GETF2_MAX_COLS

– GETF2_MAX_THDS

– GETF2_OPTIM_NGRP

– GETRF_NUM_INTERVALS

28 Chapter 2. rocSOLVER Library Design Guide



rocSOLVER Documentation, Release 3.18.0

– GETRF_INTERVALS

– GETRF_BLKSIZES

– GETRF_BATCH_NUM_INTERVALS

– GETRF_BATCH_INTERVALS

– GETRF_BATCH_BLKSIZES

– GETRF_NPVT_NUM_INTERVALS

– GETRF_NPVT_INTERVALS

– GETRF_NPVT_BLKSIZES

– GETRF_NPVT_BATCH_NUM_INTERVALS

– GETRF_NPVT_BATCH_INTERVALS

– GETRF_NPVT_BATCH_BLKSIZES

• getri function

– GETRI_MAX_COLS

– GETRI_TINY_SIZE

– GETRI_NUM_INTERVALS

– GETRI_INTERVALS

– GETRI_BLKSIZES

– GETRI_BATCH_TINY_SIZE

– GETRI_BATCH_NUM_INTERVALS

– GETRI_BATCH_INTERVALS

– GETRI_BATCH_BLKSIZES

• trtri function

– TRTRI_MAX_COLS

– TRTRI_NUM_INTERVALS

– TRTRI_INTERVALS

– TRTRI_BLKSIZES

– TRTRI_BATCH_NUM_INTERVALS

– TRTRI_BATCH_INTERVALS

– TRTRI_BATCH_BLKSIZES

2.3. Tuning rocSOLVER Performance 29



rocSOLVER Documentation, Release 3.18.0

2.3.1 geqr2/geqrf and geql2/geqlf functions

The orthogonal factorizations from the left (QR or QL factorizations) are separated into two versions: blocked and
unblocked. The unblocked routines GEQR2 and GEQL2 are based on BLAS Level 2 operations and work by applying
Householder reflectors one column at a time. The blocked routines GEQRF and GEQLF factorize a block of columns
at each step using the unblocked functions (provided the matrix is large enough) and apply the resulting block reflectors
to update the rest of the matrix. The application of the block reflectors is based on matrix-matrix operations (BLAS
Level 3), which, in general, can give better performance on the GPU.

GEQxF_BLOCKSIZE

GEQxF_BLOCKSIZE
Determines the size of the block column factorized at each step in the blocked QR or QL algorithm (GEQRF or
GEQLF). It also applies to the corresponding batched and strided-batched routines.

GEQxF_GEQx2_SWITCHSIZE

GEQxF_GEQx2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
GEQRF or GEQLF. It also applies to the corresponding batched and strided-batched routines.

GEQRF or GEQLF will factorize blocks of GEQxF_BLOCKSIZE columns at a time until the rest of the matrix
has no more than GEQxF_GEQx2_SWITCHSIZE rows or columns; at this point the last block, if any, will be
factorized with the unblocked algorithm (GEQR2 or GEQL2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.2 gerq2/gerqf and gelq2/gelqf functions

The orthogonal factorizations from the right (RQ or LQ factorizations) are separated into two versions: blocked and
unblocked. The unblocked routines GERQ2 and GELQ2 are based on BLAS Level 2 operations and work by applying
Householder reflectors one row at a time. The blocked routines GERQF and GELQF factorize a block of rows at each
step using the unblocked functions (provided the matrix is large enough) and apply the resulting block reflectors to
update the rest of the matrix. The application of the block reflectors is based on matrix-matrix operations (BLAS Level
3), which, in general, can give better performance on the GPU.

GExQF_BLOCKSIZE

GExQF_BLOCKSIZE
Determines the size of the block row factorized at each step in the blocked RQ or LQ algorithm (GERQF or
GELQF). It also applies to the corresponding batched and strided-batched routines.

30 Chapter 2. rocSOLVER Library Design Guide



rocSOLVER Documentation, Release 3.18.0

GExQF_GExQ2_SWITCHSIZE

GExQF_GExQ2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
GERQF or GELQF. It also applies to the corresponding batched and strided-batched routines.

GERQF or GELQF will factorize blocks of GExQF_BLOCKSIZE rows at a time until the rest of the matrix
has no more than GExQF_GExQ2_SWITCHSIZE rows or columns; at this point the last block, if any, will be
factorized with the unblocked algorithm (GERQ2 or GELQ2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.3 org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions

The generators of a matrix Q with orthonormal columns (as products of Householder reflectors derived from the QR or
QL factorizations) are also separated into blocked and unblocked versions. The unblocked routines ORG2R/UNG2R
and ORG2L/UNG2L, based on BLAS Level 2 operations, work by accumulating one Householder reflector at a
time. The blocked routines ORGQR/UNGQR and ORGQL/UNGQL multiply a set of reflectors at each step using
the unblocked functions (provided there are enough reflectors to accumulate) and apply the resulting block reflector
to update Q. The application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which, in
general, can give better performance on the GPU.

xxGQx_BLOCKSIZE

xxGQx_BLOCKSIZE
Determines the size of the block reflector that is applied at each step when generating a matrix Q with orthonor-
mal columns with the blocked algorithm (ORGQR/UNGQR or ORGQL/UNGQL).

xxGQx_xxGQx2_SWITCHSIZE

xxGQx_xxGQx2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
ORGQR/UNGQR or ORGQL/UNGQL.

ORGQR/UNGQR or ORGQL/UNGQL will accumulate xxGQx_BLOCKSIZE reflectors at a time until there
are no more than xxGQx_xxGQx2_SWITCHSIZE reflectors left; the remaining reflectors, if any, are applied
one by one using the unblocked algorithm (ORG2R/UNG2R or ORG2L/UNG2L).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.4 orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions

The generators of a matrix Q with orthonormal rows (as products of Householder reflectors derived from the RQ or LQ
factorizations) are also separated into blocked and unblocked versions. The unblocked routines ORGR2/UNGR2 and
ORGL2/UNGL2, based on BLAS Level 2 operations, work by accumulating one Householder reflector at a time. The
blocked routines ORGRQ/UNGRQ and ORGLQ/UNGLQ multiply a set of reflectors at each step using the unblocked
functions (provided there are enough reflectors to accumulate) and apply the resulting block reflector to update Q. The
application of the block reflectors is based on matrix-matrix operations (BLAS Level 3), which, in general, can give
better performance on the GPU.

2.3. Tuning rocSOLVER Performance 31



rocSOLVER Documentation, Release 3.18.0

xxGxQ_BLOCKSIZE

xxGxQ_BLOCKSIZE
Determines the size of the block reflector that is applied at each step when generating a matrix Q with orthonor-
mal rows with the blocked algorithm (ORGRQ/UNGRQ or ORGLQ/UNGLQ).

xxGxQ_xxGxQ2_SWITCHSIZE

xxGxQ_xxGxQ2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
ORGRQ/UNGRQ or ORGLQ/UNGLQ.

ORGRQ/UNGRQ or ORGLQ/UNGLQ will accumulate xxGxQ_BLOCKSIZE reflectors at a time until there
are no more than xxGxQ_xxGxQ2_SWITCHSIZE reflectors left; the remaining reflectors, if any, are applied
one by one using the unblocked algorithm (ORGR2/UNGR2 or ORGL2/UNGL2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.5 orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions

As with the generators of orthonormal/unitary matrices, the routines to multiply a general matrix C by a matrix Q with
orthonormal columns are separated into blocked and unblocked versions. The unblocked routines ORM2R/UNM2R
and ORM2L/UNM2L, based on BLAS Level 2 operations, work by multiplying one Householder reflector at a time,
while the blocked routines ORMQR/UNMQR and ORMQL/UNMQL apply a set of reflectors at each step (provided
there are enough reflectors to start with). The application of the block reflectors is based on matrix-matrix operations
(BLAS Level 3), which, in general, can give better performance on the GPU.

xxMQx_BLOCKSIZE

xxMQx_BLOCKSIZE
Determines the size of the block reflector that multiplies the matrix C at each step with the blocked algorithm
(ORMQR/UNMQR or ORMQL/UNMQL).

xxMQx_BLOCKSIZE also acts as a switch size; if the total number of reflectors is not greater than
xxMQx_BLOCKSIZE (k <= xxMQx_BLOCKSIZE), ORMQR/UNMQR or ORMQL/UNMQL will directly
call the unblocked routines (ORM2R/UNM2R or ORM2L/UNM2L). However, when k is not a multiple of
xxMQx_BLOCKSIZE, the last block that updates C in the blocked process is allowed to be smaller than
xxMQx_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.6 ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions

As with the generators of orthonormal/unitary matrices, the routines to multiply a general matrix C by a matrix Q
with orthonormal rows are separated into blocked and unblocked versions. The unblocked routines ORMR2/UNMR2
and ORML2/UNML2, based on BLAS Level 2 operations, work by multiplying one Householder reflector at a time,
while the blocked routines ORMRQ/UNMRQ and ORMLQ/UNMLQ apply a set of reflectors at each step (provided
there are enough reflectors to start with). The application of the block reflectors is based on matrix-matrix operations
(BLAS Level 3), which, in general, can give better performance on the GPU.

32 Chapter 2. rocSOLVER Library Design Guide



rocSOLVER Documentation, Release 3.18.0

xxMxQ_BLOCKSIZE

xxMxQ_BLOCKSIZE
Determines the size of the block reflector that multiplies the matrix C at each step with the blocked algorithm
(ORMRQ/UNMRQ or ORMLQ/UNMLQ).

xxMxQ_BLOCKSIZE also acts as a switch size; if the total number of reflectors is not greater than
xxMxQ_BLOCKSIZE (k <= xxMxQ_BLOCKSIZE), ORMRQ/UNMRQ or ORMLQ/UNMLQ will directly
call the unblocked routines (ORMR2/UNMR2 or ORML2/UNML2). However, when k is not a multiple of
xxMxQ_BLOCKSIZE, the last block that updates C in the blocked process is allowed to be smaller than
xxMxQ_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.7 gebd2/gebrd and labrd functions

The computation of the bidiagonal form of a matrix is separated into blocked and unblocked versions. The unblocked
routine GEBD2 (and the auxiliary LABRD), based on BLAS Level 2 operations, apply Householder reflections to one
column and row at a time. The blocked routine GEBRD reduces a leading block of rows and columns at each step
using the unblocked function LABRD (provided the matrix is large enough), and applies the resulting block reflectors
to update the trailing submatrix. The application of the block reflectors is based on matrix-matrix operations (BLAS
Level 3), which, in general, can give better performance on the GPU.

GEBRD_BLOCKSIZE

GEBRD_BLOCKSIZE
Determines the size of the leading block that is reduced to bidiagonal form at each step when using the blocked
algorithm (GEBRD). It also applies to the corresponding batched and strided-batched routines.

GEBRD_GEBD2_SWITCHSIZE

GEBRD_GEBD2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
GEBRD. It also applies to the corresponding batched and strided-batched routines.

GEBRD will use LABRD to reduce blocks of GEBRD_BLOCKSIZE rows and columns at a time until the
trailing submatrix has no more than GEBRD_GEBD2_SWITCHSIZE rows or columns; at this point the last
block, if any, will be reduced with the unblocked algorithm (GEBD2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.8 gesvd function

The Singular Value Decomposition of a matrix A could be sped up for matrices with sufficiently many more rows than
columns (or columns than rows) by starting with a QR factorization (or LQ factorization) of A and working with the
triangular factor afterwards.

2.3. Tuning rocSOLVER Performance 33



rocSOLVER Documentation, Release 3.18.0

THIN_SVD_SWITCH

THIN_SVD_SWITCH
Determines the factor by which one dimension of a matrix should exceed the other dimension for the thin SVD to
be computed when executing GESVD. It also applies to the corresponding batched and strided-batched routines.

When a m-by-n matrix A is passed to GESVD, if m >= THIN_SVD_SWITCH*n or n >=
THIN_SVD_SWITCH*m, then the thin SVD is computed.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.9 sytd2/sytrd, hetd2/hetrd and latrd functions

The computation of the tridiagonal form of a symmetric/Hermitian matrix is separated into blocked and unblocked
versions. The unblocked routines SYTD2/HETD2 (and the auxiliary LATRD), based on BLAS Level 2 operations,
apply Householder reflections to one column/row at a time. The blocked routine SYTRD reduces a block of rows
and columns at each step using the unblocked function LATRD (provided the matrix is large enough) and applies the
resulting block reflector to update the rest of the matrix. The application of the block reflectors is based on matrix-
matrix operations (BLAS Level 3), which, in general, can give better performance on the GPU.

xxTRD_BLOCKSIZE

xxTRD_BLOCKSIZE
Determines the size of the leading block that is reduced to tridiagonal form at each step when using the blocked
algorithm (SYTRD/HETRD). It also applies to the corresponding batched and strided-batched routines.

xxTRD_xxTD2_SWITCHSIZE

xxTRD_xxTD2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
SYTRD/HETRD. It also applies to the corresponding batched and strided-batched routines.

SYTRD/HETRD will use LATRD to reduce blocks of xxTRD_BLOCKSIZE rows and columns at a time until
the rest of the matrix has no more than xxTRD_xxTD2_SWITCHSIZE rows or columns; at this point the last
block, if any, will be reduced with the unblocked algorithm (SYTD2/HETD2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.10 sygs2/sygst and hegs2/hegst functions

The reduction of a symmetric/Hermitian-definite generalized eigenproblem to standard form is separated into blocked
and unblocked versions. The unblocked routines SYGS2/HEGS2 reduce the matrix A one column/row at a time with
vector operations and rank-2 updates (BLAS Level 2). The blocked routines SYGST/HEGST reduce a leading block
of A at each step using the unblocked methods (provided A is large enough) and update the trailing matrix with BLAS
Level 3 operations (matrix products and rank-2k updates), which, in general, can give better performance on the GPU.

34 Chapter 2. rocSOLVER Library Design Guide



rocSOLVER Documentation, Release 3.18.0

xxGST_BLOCKSIZE

xxGST_BLOCKSIZE
Determines the size of the leading block that is reduced to standard form at each step when using the blocked
algorithm (SYGST/HEGST). It also applies to the corresponding batched and strided-batched routines.

xxGST_BLOCKSIZE also acts as a switch size; if the original size of the problem is not larger than
xxGST_BLOCKSIZE (n <= xxGST_BLOCKSIZE), SYGST/HEGST will directly call the unblocked routines
(SYGS2/HEGS2). However, when n is not a multiple of xxGST_BLOCKSIZE, the last block reduced in the
blocked process is allowed to be smaller than xxGST_BLOCKSIZE.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.11 syevd, heevd and stedc functions

When running SYEVD/HEEVD (or the corresponding batched and strided-batched routines), the computation of the
eigenvectors of the associated tridiagonal matrix can be sped up using a divide-and-conquer approach (implemented
in STEDC), provided the size of the independent block is large enough.

STEDC_MIN_DC_SIZE

STEDC_MIN_DC_SIZE
Determines the minimum size required for the eigenvectors of an independent block of a tridiagonal matrix to
be computed using the divide-and-conquer algorithm (STEDC).

If the size of the block is not greater than STEDC_MIN_DC_SIZE (bs <= STEDC_MIN_DC_SIZE), the eigen-
vectors are computed with the normal QR algorithm.

(As of the current rocSOLVER release, this constant has not been tuned for any specific cases.)

2.3.12 potf2/potrf functions

The Cholesky factorization is separated into blocked (right-looking) and unblocked versions. The unblocked routine
POTF2, based on BLAS Level 2 operations, computes one diagonal element at a time and scales the corresponding
row/column. The blocked routine POTRF factorizes a leading block of rows/columns at each step using the unblocked
algorithm (provided the matrix is large enough) and updates the trailing matrix with BLAS Level 3 operations (sym-
metric rank-k updates), which, in general, can give better performance on the GPU.

POTRF_BLOCKSIZE

POTRF_BLOCKSIZE
Determines the size of the leading block that is factorized at each step when using the blocked algorithm
(POTRF). It also applies to the corresponding batched and strided-batched routines.

2.3. Tuning rocSOLVER Performance 35



rocSOLVER Documentation, Release 3.18.0

POTRF_POTF2_SWITCHSIZE

POTRF_POTF2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
POTRF. It also applies to the corresponding batched and strided-batched routines.

POTRF will factorize blocks of POTRF_BLOCKSIZE columns at a time until the rest of the matrix has no
more than POTRF_POTF2_SWITCHSIZE columns; at this point the last block, if any, will be factorized with
the unblocked algorithm (POTF2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.13 sytf2/sytrf and lasyf functions

The Bunch-Kaufman factorization is separated into blocked and unblocked versions. The unblocked routine SYTF2
generates one 1-by-1 or 2-by-2 diagonal block at a time and applies a rank-1 update. The blocked routine SYTRF
executes a partial factorization of a given maximum number of diagonal elements (LASYF) at each step (provided the
matrix is large enough), and updates the rest of the matrix with matrix-matrix operations (BLAS Level 3), which, in
general, can give better performance on the GPU.

SYTRF_BLOCKSIZE

SYTRF_BLOCKSIZE
Determines the maximum size of the partial factorization executed at each step when using the blocked algorithm
(SYTRF). It also applies to the corresponding batched and strided-batched routines.

SYTRF_SYTF2_SWITCHSIZE

SYTRF_SYTF2_SWITCHSIZE
Determines the size at which rocSOLVER switches from the unblocked to the blocked algorithm when executing
SYTRF. It also applies to the corresponding batched and strided-batched routines.

SYTRF will use LASYF to factorize a submatrix of at most SYTRF_BLOCKSIZE columns at a time until the
rest of the matrix has no more than SYTRF_SYTF2_SWITCHSIZE columns; at this point the last block, if any,
will be factorized with the unblocked algorithm (SYTF2).

(As of the current rocSOLVER release, these constants have not been tuned for any specific cases.)

2.3.14 getf2/getrf functions

GETF2_MAX_COLS

GETF2_MAX_THDS

GETF2_OPTIM_NGRP

GETRF_NUM_INTERVALS

GETRF_INTERVALS

GETRF_BLKSIZES

36 Chapter 2. rocSOLVER Library Design Guide



rocSOLVER Documentation, Release 3.18.0

GETRF_BATCH_NUM_INTERVALS

GETRF_BATCH_INTERVALS

GETRF_BATCH_BLKSIZES

GETRF_NPVT_NUM_INTERVALS

GETRF_NPVT_INTERVALS

GETRF_NPVT_BLKSIZES

GETRF_NPVT_BATCH_NUM_INTERVALS

GETRF_NPVT_BATCH_INTERVALS

GETRF_NPVT_BATCH_BLKSIZES

2.3.15 getri function

GETRI_MAX_COLS

GETRI_TINY_SIZE

GETRI_NUM_INTERVALS

GETRI_INTERVALS

GETRI_BLKSIZES

GETRI_BATCH_TINY_SIZE

GETRI_BATCH_NUM_INTERVALS

GETRI_BATCH_INTERVALS

GETRI_BATCH_BLKSIZES

2.3.16 trtri function

TRTRI_MAX_COLS

TRTRI_NUM_INTERVALS

TRTRI_INTERVALS

TRTRI_BLKSIZES

TRTRI_BATCH_NUM_INTERVALS

TRTRI_BATCH_INTERVALS

2.3. Tuning rocSOLVER Performance 37



rocSOLVER Documentation, Release 3.18.0

TRTRI_BATCH_BLKSIZES

2.4 Contributing Guidelines

More to come later. . .

38 Chapter 2. rocSOLVER Library Design Guide



CHAPTER

THREE

ROCSOLVER API

3.1 Types

rocSOLVER uses types and enumerations defined by the rocBLAS API. For more information, see the rocBLAS types
documentation. Next we present additional types, only used in rocSOLVER, that extend the rocBLAS API.

3.1.1 Additional types

List of additional types

• rocblas_direct

• rocblas_storev

• rocblas_svect

• rocblas_evect

• rocblas_workmode

• rocblas_eform

rocblas_direct

enum rocblas_direct
Used to specify the order in which multiple Householder matrices are applied together.

Values:

enumerator rocblas_forward_direction
Householder matrices applied from the right.

enumerator rocblas_backward_direction
Householder matrices applied from the left.

39

https://rocblas.readthedocs.io/en/latest/functions.html#rocblas-types


rocSOLVER Documentation, Release 3.18.0

rocblas_storev

enum rocblas_storev
Used to specify how householder vectors are stored in a matrix of vectors.

Values:

enumerator rocblas_column_wise
Householder vectors are stored in the columns of a matrix.

enumerator rocblas_row_wise
Householder vectors are stored in the rows of a matrix.

rocblas_svect

enum rocblas_svect
Used to specify how the singular vectors are to be computed and stored.

Values:

enumerator rocblas_svect_all
The entire associated orthogonal/unitary matrix is computed.

enumerator rocblas_svect_singular
Only the singular vectors are computed and stored in output array.

enumerator rocblas_svect_overwrite
Only the singular vectors are computed and overwrite the input matrix.

enumerator rocblas_svect_none
No singular vectors are computed.

rocblas_evect

enum rocblas_evect
Used to specify how the eigenvectors are to be computed.

Values:

enumerator rocblas_evect_original
Compute eigenvectors for the original symmetric/Hermitian matrix.

enumerator rocblas_evect_tridiagonal
Compute eigenvectors for the symmetric tridiagonal matrix.

enumerator rocblas_evect_none
No eigenvectors are computed.

40 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_workmode

enum rocblas_workmode
Used to enable the use of fast algorithms (with out-of-place computations) in some of the routines.

Values:

enumerator rocblas_outofplace
Out-of-place computations are allowed; this requires extra device memory for workspace.

enumerator rocblas_inplace
If not enough memory is available, this forces in-place computations.

rocblas_eform

enum rocblas_eform
Used to specify the form of the generalized eigenproblem.

Values:

enumerator rocblas_eform_ax
The problem is 𝐴𝑥 = 𝜆𝐵𝑥.

enumerator rocblas_eform_abx
The problem is 𝐴𝐵𝑥 = 𝜆𝑥.

enumerator rocblas_eform_bax
The problem is 𝐵𝐴𝑥 = 𝜆𝑥.

3.2 LAPACK Auxiliary Functions

These are functions that support more advanced LAPACK routines. The auxiliary functions are divided into the
following categories:

• Vector and Matrix manipulations. Some basic operations with vectors and matrices that are not part of the BLAS
standard.

• Householder reflections. Generation and application of Householder matrices.

• Bidiagonal forms. Computations specialized in bidiagonal matrices.

• Tridiagonal forms. Computations specialized in tridiagonal matrices.

• Symmetric matrices. Computations specialized in symmetric matrices.

• Orthonormal matrices. Generation and application of orthonormal matrices.

• Unitary matrices. Generation and application of unitary matrices.

Note: Throughout the APIs’ descriptions, we use the following notations:

• x[i] stands for the i-th element of vector x, while A[i,j] represents the element in the i-th row and j-th column of
matrix A. Indices are 1-based, i.e. x[1] is the first element of x.

• If X is a real vector or matrix, 𝑋𝑇 indicates its transpose; if X is complex, then 𝑋𝐻 represents its conjugate
transpose. When X could be real or complex, we use X’ to indicate X transposed or X conjugate transposed,
accordingly.

• x_i = 𝑥𝑖; we sometimes use both notations, 𝑥𝑖 when displaying mathematical equations, and x_i in the text
describing the function parameters.

3.2. LAPACK Auxiliary Functions 41



rocSOLVER Documentation, Release 3.18.0

3.2.1 Vector and Matrix manipulations

List of vector and matrix manipulations

• rocsolver_<type>lacgv()

• rocsolver_<type>laswp()

rocsolver_<type>lacgv()

rocblas_status rocsolver_zlacgv(rocblas_handle handle, const rocblas_int n, rocblas_double_complex
*x, const rocblas_int incx)

rocblas_status rocsolver_clacgv(rocblas_handle handle, const rocblas_int n, rocblas_float_complex
*x, const rocblas_int incx)

LACGV conjugates the complex vector x.

It conjugates the n entries of a complex vector x with increment incx.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The dimension of vector x.

• [inout] x: pointer to type. Array on the GPU of size at least n (size depends on the value of incx).
On entry, the vector x. On exit, each entry is overwritten with its conjugate value.

• [in] incx: rocblas_int. incx != 0. The distance between two consecutive elements of x. If incx is
negative, the elements of x are indexed in reverse order.

rocsolver_<type>laswp()

rocblas_status rocsolver_zlaswp(rocblas_handle handle, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, const rocblas_int k1, const rocblas_int
k2, const rocblas_int *ipiv, const rocblas_int incx)

rocblas_status rocsolver_claswp(rocblas_handle handle, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const rocblas_int k1, const rocblas_int
k2, const rocblas_int *ipiv, const rocblas_int incx)

rocblas_status rocsolver_dlaswp(rocblas_handle handle, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const
rocblas_int *ipiv, const rocblas_int incx)

rocblas_status rocsolver_slaswp(rocblas_handle handle, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_int k1, const rocblas_int k2, const
rocblas_int *ipiv, const rocblas_int incx)

LASWP performs a series of row interchanges on the matrix A.

Row interchanges are done one by one. If ipiv[𝑘1 + (𝑗 − 𝑘1) · abs(incx)] = 𝑟, then the j-th row of A will be
interchanged with the r-th row of A, for 𝑗 = 𝑘1, 𝑘1 + 1, . . . , 𝑘2. Indices 𝑘1 and 𝑘2 are 1-based indices.

42 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to which
the row interchanges will be applied. On exit, the resulting permuted matrix.

• [in] lda: rocblas_int. lda > 0. The leading dimension of the array A.

• [in] k1: rocblas_int. k1 > 0. The k_1 index. It is the first element of ipiv for which a row
interchange will be done. This is a 1-based index.

• [in] k2: rocblas_int. k2 > k1 > 0. The k_2 index. k_2 - k_1 + 1 is the number of elements of ipiv
for which a row interchange will be done. This is a 1-based index.

• [in] ipiv: pointer to rocblas_int. Array on the GPU of dimension at least k_1 + (k_2 -
k_1)*abs(incx). The vector of pivot indices. Only the elements in positions k_1 through k_1 + (k_2 -
k_1)*abs(incx) of this vector are accessed. Elements of ipiv are considered 1-based.

• [in] incx: rocblas_int. incx != 0. The distance between successive values of ipiv. If incx is
negative, the pivots are applied in reverse order.

3.2.2 Householder reflections

List of Householder functions

• rocsolver_<type>larfg()

• rocsolver_<type>larft()

• rocsolver_<type>larf()

• rocsolver_<type>larfb()

rocsolver_<type>larfg()

rocblas_status rocsolver_zlarfg(rocblas_handle handle, const rocblas_int n, rocblas_double_complex
*alpha, rocblas_double_complex *x, const rocblas_int incx,
rocblas_double_complex *tau)

rocblas_status rocsolver_clarfg(rocblas_handle handle, const rocblas_int n, rocblas_float_complex
*alpha, rocblas_float_complex *x, const rocblas_int incx,
rocblas_float_complex *tau)

rocblas_status rocsolver_dlarfg(rocblas_handle handle, const rocblas_int n, double *alpha, double
*x, const rocblas_int incx, double *tau)

rocblas_status rocsolver_slarfg(rocblas_handle handle, const rocblas_int n, float *alpha, float *x,
const rocblas_int incx, float *tau)

LARFG generates a Householder reflector H of order n.

The reflector H is such that

𝐻 ′
[︂

alpha
𝑥

]︂
=

[︂
beta

0

]︂

3.2. LAPACK Auxiliary Functions 43



rocSOLVER Documentation, Release 3.18.0

where x is an n-1 vector, and alpha and beta are scalars. Matrix H can be generated as

𝐻 = 𝐼 − tau
[︂

1
𝑣

]︂ [︀
1 𝑣′

]︀
where v is an n-1 vector, and tau is a scalar known as the Householder scalar. The vector

𝑣 =

[︂
1
𝑣

]︂

is the Householder vector associated with the reflection.

Note The matrix H is orthogonal/unitary (i.e. 𝐻 ′𝐻 = 𝐻𝐻 ′ = 𝐼). It is symmetric when real (i.e. 𝐻𝑇 = 𝐻),
but not Hermitian when complex (i.e. 𝐻𝐻 ̸= 𝐻 in general).

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The order (size) of reflector H.

• [inout] alpha: pointer to type. A scalar on the GPU. On entry, the scalar alpha. On exit, it is
overwritten with beta.

• [inout] x: pointer to type. Array on the GPU of size at least n-1 (size depends on the value of
incx). On entry, the vector x, On exit, it is overwritten with vector v.

• [in] incx: rocblas_int. incx > 0. The distance between two consecutive elements of x.

• [out] tau: pointer to type. A scalar on the GPU. The Householder scalar tau.

rocsolver_<type>larft()

rocblas_status rocsolver_zlarft(rocblas_handle handle, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int n, const rocblas_int
k, rocblas_double_complex *V, const rocblas_int ldv,
rocblas_double_complex *tau, rocblas_double_complex *T, const
rocblas_int ldt)

rocblas_status rocsolver_clarft(rocblas_handle handle, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int n, const rocblas_int
k, rocblas_float_complex *V, const rocblas_int ldv,
rocblas_float_complex *tau, rocblas_float_complex *T, const
rocblas_int ldt)

rocblas_status rocsolver_dlarft(rocblas_handle handle, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int n, const rocblas_int k,
double *V, const rocblas_int ldv, double *tau, double *T, const
rocblas_int ldt)

rocblas_status rocsolver_slarft(rocblas_handle handle, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int n, const rocblas_int
k, float *V, const rocblas_int ldv, float *tau, float *T, const
rocblas_int ldt)

LARFT generates the triangular factor T of a block reflector H of order n.

44 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

The block reflector H is defined as the product of k Householder matrices

𝐻 = 𝐻1𝐻2 · · ·𝐻𝑘 if direct indicates forward direction, or
𝐻 = 𝐻𝑘 · · ·𝐻2𝐻1 if direct indicates backward direction

The triangular factor T is upper triangular in the forward direction and lower triangular in the backward direction.
If storev is column-wise, then

𝐻 = 𝐼 − 𝑉 𝑇𝑉 ′

where the i-th column of matrix V contains the Householder vector associated with 𝐻𝑖. If storev is row-wise,
then

𝐻 = 𝐼 − 𝑉 ′𝑇𝑉

where the i-th row of matrix V contains the Householder vector associated with 𝐻𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] direct: rocblas_direct. Specifies the direction in which the Householder matrices are ap-
plied.

• [in] storev: rocblas_storev. Specifies how the Householder vectors are stored in matrix V.

• [in] n: rocblas_int. n >= 0. The order (size) of the block reflector.

• [in] k: rocblas_int. k >= 1. The number of Householder matrices forming H.

• [in] V: pointer to type. Array on the GPU of size ldv*k if column-wise, or ldv*n if row-wise. The
matrix of Householder vectors.

• [in] ldv: rocblas_int. ldv >= n if column-wise, or ldv >= k if row-wise. Leading dimension of V.

• [in] tau: pointer to type. Array of k scalars on the GPU. The vector of all the Householder scalars.

• [out] T: pointer to type. Array on the GPU of dimension ldt*k. The triangular factor. T is upper
triangular if direct indicates forward direction, otherwise it is lower triangular. The rest of the array is
not used.

• [in] ldt: rocblas_int. ldt >= k. The leading dimension of T.

rocsolver_<type>larf()

rocblas_status rocsolver_zlarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m,
const rocblas_int n, rocblas_double_complex *x, const rocblas_int
incx, const rocblas_double_complex *alpha, rocblas_double_complex
*A, const rocblas_int lda)

rocblas_status rocsolver_clarf(rocblas_handle handle, const rocblas_side side, const rocblas_int
m, const rocblas_int n, rocblas_float_complex *x, const rocblas_int
incx, const rocblas_float_complex *alpha, rocblas_float_complex *A,
const rocblas_int lda)

3.2. LAPACK Auxiliary Functions 45



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dlarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m,
const rocblas_int n, double *x, const rocblas_int incx, const double
*alpha, double *A, const rocblas_int lda)

rocblas_status rocsolver_slarf(rocblas_handle handle, const rocblas_side side, const rocblas_int m,
const rocblas_int n, float *x, const rocblas_int incx, const float
*alpha, float *A, const rocblas_int lda)

LARF applies a Householder reflector H to a general matrix A.

The Householder reflector H, of order m or n, is to be applied to an m-by-n matrix A from the left or the right,
depending on the value of side. H is given by

𝐻 = 𝐼 − alpha · 𝑥𝑥′

where alpha is the Householder scalar and x is a Householder vector. H is never actually computed.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Determines whether H is applied from the left or the right.

• [in] m: rocblas_int. m >= 0. Number of rows of A.

• [in] n: rocblas_int. n >= 0. Number of columns of A.

• [in] x: pointer to type. Array on the GPU of size at least 1 + (m-1)*abs(incx) if left side, or at least
1 + (n-1)*abs(incx) if right side. The Householder vector x.

• [in] incx: rocblas_int. incx != 0. Distance between two consecutive elements of x. If incx < 0,
the elements of x are indexed in reverse order.

• [in] alpha: pointer to type. A scalar on the GPU. The Householder scalar. If alpha = 0, then H =
I (A will remain the same; x is never used)

• [inout] A: pointer to type. Array on the GPU of size lda*n. On entry, the matrix A. On exit, it is
overwritten with H*A (or A*H).

• [in] lda: rocblas_int. lda >= m. Leading dimension of A.

rocsolver_<type>larfb()

rocblas_status rocsolver_zlarfb(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int m, const rocblas_int
n, const rocblas_int k, rocblas_double_complex *V, const
rocblas_int ldv, rocblas_double_complex *T, const rocblas_int ldt,
rocblas_double_complex *A, const rocblas_int lda)

rocblas_status rocsolver_clarfb(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int m, const rocblas_int
n, const rocblas_int k, rocblas_float_complex *V, const
rocblas_int ldv, rocblas_float_complex *T, const rocblas_int
ldt, rocblas_float_complex *A, const rocblas_int lda)

46 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dlarfb(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *V, const rocblas_int ldv, double *T,
const rocblas_int ldt, double *A, const rocblas_int lda)

rocblas_status rocsolver_slarfb(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_direct direct, const
rocblas_storev storev, const rocblas_int m, const rocblas_int
n, const rocblas_int k, float *V, const rocblas_int ldv, float *T,
const rocblas_int ldt, float *A, const rocblas_int lda)

LARFB applies a block reflector H to a general m-by-n matrix A.

The block reflector H is applied in one of the following forms, depending on the values of side and trans:

𝐻𝐴 (No transpose from the left),
𝐻 ′𝐴 (Transpose or conjugate transpose from the left),
𝐴𝐻 (No transpose from the right), or
𝐴𝐻 ′ (Transpose or conjugate transpose from the right).

The block reflector H is defined as the product of k Householder matrices as

𝐻 = 𝐻1𝐻2 · · ·𝐻𝑘 if direct indicates forward direction, or
𝐻 = 𝐻𝑘 · · ·𝐻2𝐻1 if direct indicates backward direction

H is never stored. It is calculated as

𝐻 = 𝐼 − 𝑉 𝑇𝑉 ′

where the i-th column of matrix V contains the Householder vector associated with 𝐻𝑖, if storev is column-wise;
or

𝐻 = 𝐼 − 𝑉 ′𝑇𝑉

where the i-th row of matrix V contains the Householder vector associated with 𝐻𝑖, if storev is row-wise. T is
the associated triangular factor as computed by LARFT .

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply H.

• [in] trans: rocblas_operation. Specifies whether the block reflector or its transpose/conjugate
transpose is to be applied.

• [in] direct: rocblas_direct. Specifies the direction in which the Householder matrices are to be
applied to generate H.

• [in] storev: rocblas_storev. Specifies how the Householder vectors are stored in matrix V.

3.2. LAPACK Auxiliary Functions 47



rocSOLVER Documentation, Release 3.18.0

• [in] m: rocblas_int. m >= 0. Number of rows of matrix A.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix A.

• [in] k: rocblas_int. k >= 1. The number of Householder matrices.

• [in] V: pointer to type. Array on the GPU of size ldv*k if column-wise, ldv*n if row-wise and
applying from the right, or ldv*m if row-wise and applying from the left. The matrix of Householder
vectors.

• [in] ldv: rocblas_int. ldv >= k if row-wise, ldv >= m if column-wise and applying from the left,
or ldv >= n if column-wise and applying from the right. Leading dimension of V.

• [in] T: pointer to type. Array on the GPU of dimension ldt*k. The triangular factor of the block
reflector.

• [in] ldt: rocblas_int. ldt >= k. The leading dimension of T.

• [inout] A: pointer to type. Array on the GPU of size lda*n. On entry, the matrix A. On exit, it is
overwritten with H*A, A*H, H’*A, or A*H’.

• [in] lda: rocblas_int. lda >= m. Leading dimension of A.

3.2.3 Bidiagonal forms

List of functions for bidiagonal forms

• rocsolver_<type>labrd()

• rocsolver_<type>bdsqr()

rocsolver_<type>labrd()

rocblas_status rocsolver_zlabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, const rocblas_int k, rocblas_double_complex *A, const
rocblas_int lda, double *D, double *E, rocblas_double_complex *tauq,
rocblas_double_complex *taup, rocblas_double_complex *X, const
rocblas_int ldx, rocblas_double_complex *Y, const rocblas_int ldy)

rocblas_status rocsolver_clabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, const rocblas_int k, rocblas_float_complex *A, const
rocblas_int lda, float *D, float *E, rocblas_float_complex *tauq,
rocblas_float_complex *taup, rocblas_float_complex *X, const
rocblas_int ldx, rocblas_float_complex *Y, const rocblas_int ldy)

rocblas_status rocsolver_dlabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *D,
double *E, double *tauq, double *taup, double *X, const rocblas_int
ldx, double *Y, const rocblas_int ldy)

rocblas_status rocsolver_slabrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *D, float
*E, float *tauq, float *taup, float *X, const rocblas_int ldx, float *Y,
const rocblas_int ldy)

LABRD computes the bidiagonal form of the first k rows and columns of a general m-by-n matrix A, as well as
the matrices X and Y needed to reduce the remaining part of A.

The reduced form is given by:

48 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐵 = 𝑄′𝐴𝑃

where the leading k-by-k block of B is upper bidiagonal if m >= n, or lower bidiagonal if m < n. Q and P are
orthogonal/unitary matrices represented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘, and
𝑃 = 𝐺1𝐺2 · · ·𝐺𝑘.

Each Householder matrix 𝐻𝑖 and 𝐺𝑖 is given by

𝐻𝑖 = 𝐼 − tauq[𝑖] · 𝑣𝑖𝑣′𝑖, and
𝐺𝑖 = 𝐼 − taup[𝑖] · 𝑢𝑖𝑢

′
𝑖.

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖+ 1] = 1. If m < n, the first i elements of the Householder vector
𝑣𝑖 are zero, and 𝑣𝑖[𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖] = 1.

The unreduced part of the matrix A can be updated using the block update

𝐴 = 𝐴− 𝑉 𝑌 ′ −𝑋𝑈 ′

where V and U are the m-by-k and n-by-k matrices formed with the vectors 𝑣𝑖 and 𝑢𝑖, respectively.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [in] k: rocblas_int. min(m,n) >= k >= 0. The number of leading rows and columns of matrix A
that will be reduced.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to
be reduced. On exit, the first k elements on the diagonal and superdiagonal (if m >= n), or subdiagonal
(if m < n), contain the bidiagonal form B. If m >= n, the elements below the diagonal of the first k
columns are the possibly non-zero elements of the Householder vectors associated with Q, while the
elements above the superdiagonal of the first k rows are the n - i - 1 possibly non-zero elements of the
Householder vectors related to P. If m < n, the elements below the subdiagonal of the first k columns
are the m - i - 1 possibly non-zero elements of the Householder vectors related to Q, while the elements
above the diagonal of the first k rows are the n - i possibly non-zero elements of the vectors associated
with P.

• [in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

• [out] D: pointer to real type. Array on the GPU of dimension k. The diagonal elements of B.

• [out] E: pointer to real type. Array on the GPU of dimension k. The off-diagonal elements of B.

• [out] tauq: pointer to type. Array on the GPU of dimension k. The Householder scalars associ-
ated with matrix Q.

3.2. LAPACK Auxiliary Functions 49



rocSOLVER Documentation, Release 3.18.0

• [out] taup: pointer to type. Array on the GPU of dimension k. The Householder scalars associ-
ated with matrix P.

• [out] X: pointer to type. Array on the GPU of dimension ldx*k. The m-by-k matrix needed to
update the unreduced part of A.

• [in] ldx: rocblas_int. ldx >= m. The leading dimension of X.

• [out] Y: pointer to type. Array on the GPU of dimension ldy*k. The n-by-k matrix needed to
update the unreduced part of A.

• [in] ldy: rocblas_int. ldy >= n. The leading dimension of Y.

rocsolver_<type>bdsqr()

rocblas_status rocsolver_zbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nv, const rocblas_int nu, const rocblas_int
nc, double *D, double *E, rocblas_double_complex *V, const
rocblas_int ldv, rocblas_double_complex *U, const rocblas_int
ldu, rocblas_double_complex *C, const rocblas_int ldc, rocblas_int
*info)

rocblas_status rocsolver_cbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nv, const rocblas_int nu, const
rocblas_int nc, float *D, float *E, rocblas_float_complex *V, const
rocblas_int ldv, rocblas_float_complex *U, const rocblas_int ldu,
rocblas_float_complex *C, const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_dbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nv, const rocblas_int nu, const rocblas_int nc,
double *D, double *E, double *V, const rocblas_int ldv, double *U,
const rocblas_int ldu, double *C, const rocblas_int ldc, rocblas_int
*info)

rocblas_status rocsolver_sbdsqr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nv, const rocblas_int nu, const rocblas_int nc,
float *D, float *E, float *V, const rocblas_int ldv, float *U, const
rocblas_int ldu, float *C, const rocblas_int ldc, rocblas_int *info)

BDSQR computes the singular value decomposition (SVD) of an n-by-n bidiagonal matrix B, using the implicit
QR algorithm.

The SVD of B has the form:

𝐵 = 𝑄𝑆𝑃 ′

where S is the n-by-n diagonal matrix of singular values of B, the columns of Q are the left singular vectors of
B, and the columns of P are its right singular vectors.

The computation of the singular vectors is optional; this function accepts input matrices U (of size nu-by-n) and
V (of size n-by-nv) that are overwritten with 𝑈𝑄 and 𝑃 ′𝑉 . If nu = 0 no left vectors are computed; if nv = 0 no
right vectors are computed.

Optionally, this function can also compute 𝑄′𝐶 for a given n-by-nc input matrix C.

Parameters

• [in] handle: rocblas_handle.

50 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] uplo: rocblas_fill. Specifies whether B is upper or lower bidiagonal.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix B.

• [in] nv: rocblas_int. nv >= 0. The number of columns of matrix V.

• [in] nu: rocblas_int. nu >= 0. The number of rows of matrix U.

• [in] nc: rocblas_int. nu >= 0. The number of columns of matrix C.

• [inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements
of B. On exit, if info = 0, the singular values of B in decreasing order; if info > 0, the diagonal elements
of a bidiagonal matrix orthogonally equivalent to B.

• [inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal
elements of B. On exit, if info > 0, the off-diagonal elements of a bidiagonal matrix orthogonally
equivalent to B (if info = 0 this matrix converges to zero).

• [inout] V: pointer to type. Array on the GPU of dimension ldv*nv. On entry, the matrix V. On
exit, it is overwritten with P’*V. (Not referenced if nv = 0).

• [in] ldv: rocblas_int. ldv >= n if nv > 0, or ldv >=1 if nv = 0. The leading dimension of V.

• [inout] U: pointer to type. Array on the GPU of dimension ldu*n. On entry, the matrix U. On
exit, it is overwritten with U*Q. (Not referenced if nu = 0).

• [in] ldu: rocblas_int. ldu >= nu. The leading dimension of U.

• [inout] C: pointer to type. Array on the GPU of dimension ldc*nc. On entry, the matrix C. On
exit, it is overwritten with Q’*C. (Not referenced if nc = 0).

• [in] ldc: rocblas_int. ldc >= n if nc > 0, or ldc >=1 if nc = 0. The leading dimension of C.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, i
elements of E have not converged to zero.

3.2.4 Tridiagonal forms

List of functions for tridiagonal forms

• rocsolver_<type>latrd()

• rocsolver_<type>sterf()

• rocsolver_<type>steqr()

• rocsolver_<type>stedc()

rocsolver_<type>latrd()

rocblas_status rocsolver_zlatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int k, rocblas_double_complex *A, const
rocblas_int lda, double *E, rocblas_double_complex *tau,
rocblas_double_complex *W, const rocblas_int ldw)

rocblas_status rocsolver_clatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, float *E, rocblas_float_complex *tau, rocblas_float_complex *W,
const rocblas_int ldw)

3.2. LAPACK Auxiliary Functions 51



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dlatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *E,
double *tau, double *W, const rocblas_int ldw)

rocblas_status rocsolver_slatrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *E, float
*tau, float *W, const rocblas_int ldw)

LATRD computes the tridiagonal form of k rows and columns of a symmetric/hermitian matrix A, as well as
the matrix W needed to update the remaining part of A.

The reduced form is given by:

𝑇 = 𝑄′𝐴𝑄

If uplo is lower, the first k rows and columns of T form the tridiagonal block. If uplo is upper, then the last k
rows and columns of T form the tridiagonal block. Q is an orthogonal/unitary matrix represented as the product
of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘 if uplo indicates lower, or
𝑄 = 𝐻𝑛𝐻𝑛−1 · · ·𝐻𝑛−𝑘+1 if uplo is upper.

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − tau[𝑖] · 𝑣𝑖𝑣′𝑖

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖 + 1] = 1. If uplo is upper, the last n-i elements of the Householder
vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

The unreduced part of the matrix A can be updated using a rank update of the form:

𝐴 = 𝐴− 𝑉𝑊 ′ −𝑊𝑉 ′

where V is the n-by-k matrix formed by the vectors 𝑣𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [in] k: rocblas_int. 0 <= k <= n. The number of rows and columns of the matrix A to be reduced.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the n-by-n matrix to
be reduced. On exit, if uplo is lower, the first k columns have been reduced to tridiagonal form (given
in the diagonal elements of A and the array E), the elements below the diagonal contain the possibly
non-zero entries of the Householder vectors associated with Q, stored as columns. If uplo is upper,
the last k columns have been reduced to tridiagonal form (given in the diagonal elements of A and the
array E), the elements above the diagonal contain the possibly non-zero entries of the Householder
vectors associated with Q, stored as columns.

52 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] E: pointer to real type. Array on the GPU of dimension n-1. If upper (lower), the last (first)
k elements of E are the off-diagonal elements of the computed tridiagonal block.

• [out] tau: pointer to type. Array on the GPU of dimension n-1. If upper (lower), the last (first) k
elements of tau are the Householder scalars related to Q.

• [out] W: pointer to type. Array on the GPU of dimension ldw*k. The n-by-k matrix needed to
update the unreduced part of A.

• [in] ldw: rocblas_int. ldw >= n. The leading dimension of W.

rocsolver_<type>sterf()

rocblas_status rocsolver_dsterf(rocblas_handle handle, const rocblas_int n, double *D, double *E,
rocblas_int *info)

rocblas_status rocsolver_ssterf(rocblas_handle handle, const rocblas_int n, float *D, float *E,
rocblas_int *info)

STERF computes the eigenvalues of a symmetric tridiagonal matrix.

The eigenvalues of the symmetric tridiagonal matrix are computed by the Pal-Walker-Kahan variant of the
QL/QR algorithm, and returned in increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric
off-diagonal elements E.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

• [inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements
of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order. If info > 0, the
diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same
eigenvalues).

• [inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal
elements of the tridiagonal matrix. On exit, if info = 0, this array converges to zero. If info > 0, the
off-diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same
eigenvalues).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0,
STERF did not converge. i elements of E did not converge to zero.

rocsolver_<type>steqr()

rocblas_status rocsolver_zsteqr(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, double *D, double *E, rocblas_double_complex
*C, const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_csteqr(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, float *D, float *E, rocblas_float_complex *C, const
rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_dsteqr(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, double *D, double *E, double *C, const rocblas_int
ldc, rocblas_int *info)

3.2. LAPACK Auxiliary Functions 53



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_ssteqr(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, float *D, float *E, float *C, const rocblas_int
ldc, rocblas_int *info)

STEQR computes the eigenvalues and (optionally) eigenvectors of a symmetric tridiagonal matrix.

The eigenvalues of the symmetric tridiagonal matrix are computed by the implicit QL/QR algorithm, and re-
turned in increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric
off-diagonal elements E. When D and E correspond to the tridiagonal form of a full symmetric/Hermitian matrix,
as returned by, e.g., SYTRD or HETRD, the eigenvectors of the original matrix can also be computed, depending
on the value of evect.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies how the eigenvectors are computed.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

• [inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements
of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order. If info > 0, the
diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same
eigenvalues).

• [inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal
elements of the tridiagonal matrix. On exit, if info = 0, this array converges to zero. If info > 0, the
off-diagonal elements of a tridiagonal matrix that is similar to the original matrix (i.e. has the same
eigenvalues).

• [inout] C: pointer to type. Array on the GPU of dimension ldc*n. On entry, if evect is original, the
orthogonal/unitary matrix used for the reduction to tridiagonal form as returned by, e.g., ORGTR or
UNGTR. On exit, it is overwritten with the eigenvectors of the original symmetric/Hermitian matrix (if
evect is original), or the eigenvectors of the tridiagonal matrix (if evect is tridiagonal). (Not referenced
if evect is none).

• [in] ldc: rocblas_int. ldc >= n if evect is original or tridiagonal. Specifies the leading dimension
of C. (Not referenced if evect is none).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0,
STEQR did not converge. i elements of E did not converge to zero.

rocsolver_<type>stedc()

rocblas_status rocsolver_zstedc(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, double *D, double *E, rocblas_double_complex
*C, const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_cstedc(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, float *D, float *E, rocblas_float_complex *C, const
rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_dstedc(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, double *D, double *E, double *C, const rocblas_int
ldc, rocblas_int *info)

54 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sstedc(rocblas_handle handle, const rocblas_evect evect, const
rocblas_int n, float *D, float *E, float *C, const rocblas_int
ldc, rocblas_int *info)

STEDC computes the eigenvalues and (optionally) eigenvectors of a symmetric tridiagonal matrix.

This function uses the divide and conquer method to compute the eigenvectors. The eigenvalues are returned in
increasing order.

The matrix is not represented explicitly, but rather as the array of diagonal elements D and the array of symmetric
off-diagonal elements E. When D and E correspond to the tridiagonal form of a full symmetric/Hermitian matrix,
as returned by, e.g., SYTRD or HETRD, the eigenvectors of the original matrix can also be computed, depending
on the value of evect.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies how the eigenvectors are computed.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the tridiagonal matrix.

• [inout] D: pointer to real type. Array on the GPU of dimension n. On entry, the diagonal elements
of the tridiagonal matrix. On exit, if info = 0, the eigenvalues in increasing order.

• [inout] E: pointer to real type. Array on the GPU of dimension n-1. On entry, the off-diagonal
elements of the tridiagonal matrix. On exit, if info = 0, the values of this array are destroyed.

• [inout] C: pointer to type. Array on the GPU of dimension ldc*n. On entry, if evect is orig-
inal, the orthogonal/unitary matrix used for the reduction to tridiagonal form as returned by, e.g.,
ORGTR or UNGTR. On exit, if info = 0, it is overwritten with the eigenvectors of the original sym-
metric/Hermitian matrix (if evect is original), or the eigenvectors of the tridiagonal matrix (if evect is
tridiagonal). (Not referenced if evect is none).

• [in] ldc: rocblas_int. ldc >= n if evect is original or tridiagonal. Specifies the leading dimension
of C. (Not referenced if evect is none).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, STEDC
failed to compute an eigenvalue on the sub-matrix formed by the rows and columns info/(n+1) through
mod(info,n+1).

3.2.5 Symmetric matrices

List of functions for symmetric matrices

• rocsolver_<type>lasyf()

3.2. LAPACK Auxiliary Functions 55



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>lasyf()

rocblas_status rocsolver_zlasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nb, rocblas_int *kb, rocblas_double_complex *A,
const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_clasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nb, rocblas_int *kb, rocblas_float_complex *A,
const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_dlasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nb, rocblas_int *kb, double *A, const rocblas_int
lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_slasyf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nb, rocblas_int *kb, float *A, const rocblas_int
lda, rocblas_int *ipiv, rocblas_int *info)

LASYF computes a partial factorization of a symmetric matrix 𝐴 using Bunch-Kaufman diagonal pivoting.

The partial factorization has the form

𝐴 =

[︂
𝐼 𝑈12

0 𝑈22

]︂ [︂
𝐴11 0
0 𝐷

]︂ [︂
𝐼 0

𝑈𝑇
12 𝑈𝑇

22

]︂
or

𝐴 =

[︂
𝐿11 0
𝐿21 𝐼

]︂ [︂
𝐷 0
0 𝐴22

]︂ [︂
𝐿𝑇
11 𝐿𝑇

21

0 𝐼

]︂

depending on the value of uplo. The order of the block diagonal matrix 𝐷 is either 𝑛𝑏 or 𝑛𝑏− 1, and is returned
in the argument 𝑘𝑏.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [in] nb: rocblas_int. 2 <= nb <= n. The number of columns of A to be factored.

• [out] kb: pointer to a rocblas_int on the GPU. The number of columns of A that were actually
factored (either nb or nb-1).

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix
A to be factored. On exit, the partially factored matrix.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. If uplo is upper, then only the last kb elements of ipiv will be
set. For n - kb < k <= n, if ipiv[k] > 0 then rows and columns k and ipiv[k] were interchanged and
D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0, then rows and columns k-1 and
-ipiv[k] were interchanged and D[k-1,k-1] to D[k,k] is a 2-by-2 diagonal block. If uplo is lower, then
only the first kb elements of ipiv will be set. For 1 <= k <= kb, if ipiv[k] > 0 then rows and columns k

56 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

and ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k+1]
< 0, then rows and columns k+1 and -ipiv[k] were interchanged and D[k,k] to D[k+1,k+1] is a 2-by-2
diagonal block.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D
is singular. D[j,j] is the first diagonal zero.

3.2.6 Orthonormal matrices

List of functions for orthonormal matrices

• rocsolver_<type>org2r()

• rocsolver_<type>orgqr()

• rocsolver_<type>orgl2()

• rocsolver_<type>orglq()

• rocsolver_<type>org2l()

• rocsolver_<type>orgql()

• rocsolver_<type>orgbr()

• rocsolver_<type>orgtr()

• rocsolver_<type>orm2r()

• rocsolver_<type>ormqr()

• rocsolver_<type>orml2()

• rocsolver_<type>ormlq()

• rocsolver_<type>orm2l()

• rocsolver_<type>ormql()

• rocsolver_<type>ormbr()

• rocsolver_<type>ormtr()

rocsolver_<type>org2r()

rocblas_status rocsolver_dorg2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorg2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORG2R generates an m-by-n Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘.

3.2. LAPACK Auxiliary Functions 57



rocSOLVER Documentation, Release 3.18.0

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQRF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQRF, with the Householder vectors in the first k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

rocsolver_<type>orgqr()

rocblas_status rocsolver_dorgqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorgqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORGQR generates an m-by-n Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQRF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQRF, with the Householder vectors in the first k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

58 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>orgl2()

rocblas_status rocsolver_dorgl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorgl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORGL2 generates an m-by-n Matrix Q with orthonormal rows.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GELQF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix
Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

rocsolver_<type>orglq()

rocblas_status rocsolver_dorglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORGLQ generates an m-by-n Matrix Q with orthonormal rows.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GELQF.

3.2. LAPACK Auxiliary Functions 59



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix
Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

rocsolver_<type>org2l()

rocblas_status rocsolver_dorg2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorg2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORG2L generates an m-by-n Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQLF, with the Householder vectors in the last k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

60 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>orgql()

rocblas_status rocsolver_dorgql(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorgql(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv)

ORGQL generates an m-by-n Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the last n column of the product of k Householder reflectors of order m

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQLF, with the Householder vectors in the last k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

rocsolver_<type>orgbr()

rocblas_status rocsolver_dorgbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_int m, const rocblas_int n, const rocblas_int k, double *A,
const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorgbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_int m, const rocblas_int n, const rocblas_int k, float *A,
const rocblas_int lda, float *ipiv)

ORGBR generates an m-by-n Matrix Q with orthonormal rows or columns.

If storev is column-wise, then the matrix Q has orthonormal columns. If m >= k, Q is defined as the first n
columns of the product of k Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

If m < k, Q is defined as the product of Householder reflectors of order m

3.2. LAPACK Auxiliary Functions 61



rocSOLVER Documentation, Release 3.18.0

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑚−1

On the other hand, if storev is row-wise, then the matrix Q has orthonormal rows. If n > k, Q is defined as the
first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

If n <= k, Q is defined as the product of Householder reflectors of order n

𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEBRD in its arguments A and tauq or taup.

Parameters

• [in] handle: rocblas_handle.

• [in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q. If row-wise, then min(n,k) <= m
<= n.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q. If column-wise, then min(m,k)
<= n <= m.

• [in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-
wise) of the original matrix reduced by GEBRD.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder
vectors as returned by GEBRD. On exit, the computed matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension min(m,k) if column-wise, or min(n,k)
if row-wise. The Householder scalars as returned by GEBRD.

rocsolver_<type>orgtr()

rocblas_status rocsolver_dorgtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sorgtr(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

ORGTR generates an n-by-n orthogonal Matrix Q.

Q is defined as the product of n-1 Householder reflectors of order n. If uplo indicates upper, then Q has the form

𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1

62 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

On the other hand, if uplo indicates lower, then Q has the form

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by SYTRD in its arguments A and tau.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the SYTRD factorization was upper or lower triangular.
If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix Q.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder
vectors as returned by SYTRD. On exit, the computed matrix Q.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension n-1. The Householder scalars as
returned by SYTRD.

rocsolver_<type>orm2r()

rocblas_status rocsolver_dorm2r(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sorm2r(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORM2R multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QR factorization GEQRF.

3.2. LAPACK Auxiliary Functions 63



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQRF in the first k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormqr()

rocblas_status rocsolver_dormqr(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sormqr(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORMQR multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QR factorization GEQRF.

64 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQRF in the first k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>orml2()

rocblas_status rocsolver_dorml2(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sorml2(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORML2 multiplies a matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the LQ factorization GELQF.

3.2. LAPACK Auxiliary Functions 65



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The
Householder vectors as returned by GELQF in the first k rows of its argument A.

• [in] lda: rocblas_int. lda >= k. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormlq()

rocblas_status rocsolver_dormlq(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sormlq(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORMLQ multiplies a matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the LQ factorization GELQF.

66 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The
Householder vectors as returned by GELQF in the first k rows of its argument A.

• [in] lda: rocblas_int. lda >= k. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>orm2l()

rocblas_status rocsolver_dorm2l(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sorm2l(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORM2L multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QL factorization GEQLF.

3.2. LAPACK Auxiliary Functions 67



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQLF in the last k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormql()

rocblas_status rocsolver_dormql(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, double *A, const rocblas_int lda, double *ipiv,
double *C, const rocblas_int ldc)

rocblas_status rocsolver_sormql(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, float *A, const rocblas_int lda, float *ipiv, float
*C, const rocblas_int ldc)

ORMQL multiplies a matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QL factorization GEQLF.

68 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQLF in the last k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormbr()

rocblas_status rocsolver_dormbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_side side, const rocblas_operation trans, const rocblas_int
m, const rocblas_int n, const rocblas_int k, double *A, const
rocblas_int lda, double *ipiv, double *C, const rocblas_int ldc)

rocblas_status rocsolver_sormbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_side side, const rocblas_operation trans, const rocblas_int
m, const rocblas_int n, const rocblas_int k, float *A, const
rocblas_int lda, float *ipiv, float *C, const rocblas_int ldc)

ORMBR multiplies a matrix Q with orthonormal rows or columns by a general m-by-n matrix C.

If storev is column-wise, then the matrix Q has orthonormal columns. If storev is row-wise, then the matrix Q
has orthonormal rows. The matrix Q is applied in one of the following forms, depending on the values of side
and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

The order q of the orthogonal matrix Q is q = m if applying from the left, or q = n if applying from the right.

When storev is column-wise, if q >= k, then Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘,

and if q < k, then Q is defined as the product

3.2. LAPACK Auxiliary Functions 69



rocSOLVER Documentation, Release 3.18.0

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1.

When storev is row-wise, if q > k, then Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘,

and if q <= k, Q is defined as the product

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1.

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
and scalars as returned by GEBRD in its arguments A and tauq or taup.

Parameters

• [in] handle: rocblas_handle.

• [in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-
wise) of the original matrix reduced by GEBRD.

• [in] A: pointer to type. Array on the GPU of size lda*min(q,k) if column-wise, or lda*q if row-
wise. The Householder vectors as returned by GEBRD.

• [in] lda: rocblas_int. lda >= q if column-wise, or lda >= min(q,k) if row-wise. Leading dimension
of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least min(q,k). The Householder
scalars as returned by GEBRD.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>ormtr()

rocblas_status rocsolver_dormtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill
uplo, const rocblas_operation trans, const rocblas_int m, const
rocblas_int n, double *A, const rocblas_int lda, double *ipiv, double
*C, const rocblas_int ldc)

70 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sormtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill
uplo, const rocblas_operation trans, const rocblas_int m, const
rocblas_int n, float *A, const rocblas_int lda, float *ipiv, float *C,
const rocblas_int ldc)

ORMTR multiplies an orthogonal matrix Q by a general m-by-n matrix C.

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝑇𝐶 Transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝑇 Transpose from the right.

The order q of the orthogonal matrix Q is q = m if applying from the left, or q = n if applying from the right.

Q is defined as a product of q-1 Householder reflectors. If uplo indicates upper, then Q has the form

𝑄 = 𝐻𝑞−1𝐻𝑞−2 · · ·𝐻1.

On the other hand, if uplo indicates lower, then Q has the form

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
and scalars as returned by SYTRD in its arguments A and tau.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] uplo: rocblas_fill. Specifies whether the SYTRD factorization was upper or lower triangular.
If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its transpose is to be applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] A: pointer to type. Array on the GPU of size lda*q. On entry, the Householder vectors as
returned by SYTRD.

• [in] lda: rocblas_int. lda >= q. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least q-1. The Householder scalars
as returned by SYTRD.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.2. LAPACK Auxiliary Functions 71



rocSOLVER Documentation, Release 3.18.0

3.2.7 Unitary matrices

List of functions for unitary matrices

• rocsolver_<type>ung2r()

• rocsolver_<type>ungqr()

• rocsolver_<type>ungl2()

• rocsolver_<type>unglq()

• rocsolver_<type>ung2l()

• rocsolver_<type>ungql()

• rocsolver_<type>ungbr()

• rocsolver_<type>ungtr()

• rocsolver_<type>unm2r()

• rocsolver_<type>unmqr()

• rocsolver_<type>unml2()

• rocsolver_<type>unmlq()

• rocsolver_<type>unm2l()

• rocsolver_<type>unmql()

• rocsolver_<type>unmbr()

• rocsolver_<type>unmtr()

rocsolver_<type>ung2r()

rocblas_status rocsolver_zung2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cung2r(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNG2R generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQRF.

Parameters

72 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQRF, with the Householder vectors in the first k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

rocsolver_<type>ungqr()

rocblas_status rocsolver_zungqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cungqr(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNGQR generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors 𝑣𝑖
and scalars ipiv[𝑖], as returned by GEQRF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQRF, with the Householder vectors in the first k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

3.2. LAPACK Auxiliary Functions 73



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>ungl2()

rocblas_status rocsolver_zungl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cungl2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNGL2 generates an m-by-n complex Matrix Q with orthonormal rows.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝐻
𝑘 𝐻𝐻

𝑘−1 · · ·𝐻𝐻
1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GELQF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix
Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

rocsolver_<type>unglq()

rocblas_status rocsolver_zunglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cunglq(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNGLQ generates an m-by-n complex Matrix Q with orthonormal rows.

(This is the blocked version of the algorithm).

The matrix Q is defined as the first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝐻
𝑘 𝐻𝐻

𝑘−1 · · ·𝐻𝐻
1

74 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GELQF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. 0 <= m <= n. The number of rows of the matrix Q.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= m. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GELQF, with the Householder vectors in the first k rows. On exit, the computed matrix
Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

rocsolver_<type>ung2l()

rocblas_status rocsolver_zung2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cung2l(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNG2L generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the unblocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQLF, with the Householder vectors in the last k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

3.2. LAPACK Auxiliary Functions 75



rocSOLVER Documentation, Release 3.18.0

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

rocsolver_<type>ungql()

rocblas_status rocsolver_zungql(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

rocblas_status rocsolver_cungql(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv)

UNGQL generates an m-by-n complex Matrix Q with orthonormal columns.

(This is the blocked version of the algorithm).

The matrix Q is defined as the last n columns of the product of k Householder reflectors of order m

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q.

• [in] n: rocblas_int. 0 <= n <= m. The number of columns of the matrix Q.

• [in] k: rocblas_int. 0 <= k <= n. The number of Householder reflectors.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A as
returned by GEQLF, with the Householder vectors in the last k columns. On exit, the computed
matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

rocsolver_<type>ungbr()

rocblas_status rocsolver_zungbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_int m, const rocblas_int n, const rocblas_int
k, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cungbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_int m, const rocblas_int n, const rocblas_int
k, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

UNGBR generates an m-by-n complex Matrix Q with orthonormal rows or columns.

If storev is column-wise, then the matrix Q has orthonormal columns. If m >= k, Q is defined as the first n
columns of the product of k Householder reflectors of order m

76 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

If m < k, Q is defined as the product of Householder reflectors of order m

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑚−1

On the other hand, if storev is row-wise, then the matrix Q has orthonormal rows. If n > k, Q is defined as the
first m rows of the product of k Householder reflectors of order n

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

If n <= k, Q is defined as the product of Householder reflectors of order n

𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by GEBRD in its arguments A and tauq or taup.

Parameters

• [in] handle: rocblas_handle.

• [in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix Q. If row-wise, then min(n,k) <= m
<= n.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix Q. If column-wise, then min(m,k)
<= n <= m.

• [in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-
wise) of the original matrix reduced by GEBRD.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder
vectors as returned by GEBRD. On exit, the computed matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension min(m,k) if column-wise, or min(n,k)
if row-wise. The Householder scalars as returned by GEBRD.

rocsolver_<type>ungtr()

rocblas_status rocsolver_zungtr(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv)

3.2. LAPACK Auxiliary Functions 77



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_cungtr(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

UNGTR generates an n-by-n unitary Matrix Q.

Q is defined as the product of n-1 Householder reflectors of order n. If uplo indicates upper, then Q has the form

𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1

On the other hand, if uplo indicates lower, then Q has the form

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
𝑣𝑖 and scalars ipiv[𝑖], as returned by HETRD in its arguments A and tau.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the HETRD factorization was upper or lower triangular.
If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix Q.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the Householder
vectors as returned by HETRD. On exit, the computed matrix Q.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension n-1. The Householder scalars as
returned by HETRD.

rocsolver_<type>unm2r()

rocblas_status rocsolver_zunm2r(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

rocblas_status rocsolver_cunm2r(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNM2R multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

78 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QR factorization GEQRF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQRF in the first k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmqr()

rocblas_status rocsolver_zunmqr(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

rocblas_status rocsolver_cunmqr(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNMQR multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

3.2. LAPACK Auxiliary Functions 79



rocSOLVER Documentation, Release 3.18.0

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QR factorization GEQRF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQRF in the first k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, or lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQRF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unml2()

rocblas_status rocsolver_zunml2(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

80 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_cunml2(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNML2 multiplies a complex matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝐻
𝑘 𝐻𝐻

𝑘−1 · · ·𝐻𝐻
1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the LQ factorization GELQF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The
Householder vectors as returned by GELQF in the first k rows of its argument A.

• [in] lda: rocblas_int. lda >= k. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.2. LAPACK Auxiliary Functions 81



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>unmlq()

rocblas_status rocsolver_zunmlq(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

rocblas_status rocsolver_cunmlq(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNMLQ multiplies a complex matrix Q with orthonormal rows by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝐻
𝑘 𝐻𝐻

𝑘−1 · · ·𝐻𝐻
1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the LQ factorization GELQF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*m if side is left, or lda*n if side is right. The
Householder vectors as returned by GELQF in the first k rows of its argument A.

• [in] lda: rocblas_int. lda >= k. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GELQF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

82 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>unm2l()

rocblas_status rocsolver_zunm2l(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

rocblas_status rocsolver_cunm2l(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNM2L multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the unblocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QL factorization GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQLF in the last k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.2. LAPACK Auxiliary Functions 83



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>unmql()

rocblas_status rocsolver_zunmql(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_double_complex *A, const rocblas_int
lda, rocblas_double_complex *ipiv, rocblas_double_complex *C,
const rocblas_int ldc)

rocblas_status rocsolver_cunmql(rocblas_handle handle, const rocblas_side side, const
rocblas_operation trans, const rocblas_int m, const rocblas_int n,
const rocblas_int k, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNMQL multiplies a complex matrix Q with orthonormal columns by a general m-by-n matrix C.

(This is the blocked version of the algorithm).

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

Q is defined as the product of k Householder reflectors

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1

of order m if applying from the left, or n if applying from the right. Q is never stored, it is calculated from the
Householder vectors and scalars returned by the QL factorization GEQLF.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0; k <= m if side is left, k <= n if side is right. The number of Householder
reflectors that form Q.

• [in] A: pointer to type. Array on the GPU of size lda*k. The Householder vectors as returned by
GEQLF in the last k columns of its argument A.

• [in] lda: rocblas_int. lda >= m if side is left, lda >= n if side is right. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least k. The Householder scalars as
returned by GEQLF.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

84 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>unmbr()

rocblas_status rocsolver_zunmbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_side side, const rocblas_operation trans, const
rocblas_int m, const rocblas_int n, const rocblas_int
k, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv, rocblas_double_complex *C, const
rocblas_int ldc)

rocblas_status rocsolver_cunmbr(rocblas_handle handle, const rocblas_storev storev, const
rocblas_side side, const rocblas_operation trans, const rocblas_int
m, const rocblas_int n, const rocblas_int k, rocblas_float_complex
*A, const rocblas_int lda, rocblas_float_complex *ipiv,
rocblas_float_complex *C, const rocblas_int ldc)

UNMBR multiplies a complex matrix Q with orthonormal rows or columns by a general m-by-n matrix C.

If storev is column-wise, then the matrix Q has orthonormal columns. If storev is row-wise, then the matrix Q
has orthonormal rows. The matrix Q is applied in one of the following forms, depending on the values of side
and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

The order q of the unitary matrix Q is q = m if applying from the left, or q = n if applying from the right.

When storev is column-wise, if q >= k, then Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘,

and if q < k, then Q is defined as the product

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1.

When storev is row-wise, if q > k, then Q is defined as the product of k Householder reflectors

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘,

and if q <= k, Q is defined as the product

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1.

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
and scalars as returned by GEBRD in its arguments A and tauq or taup.

3.2. LAPACK Auxiliary Functions 85



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] storev: rocblas_storev. Specifies whether to work column-wise or row-wise.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] k: rocblas_int. k >= 0. The number of columns (if storev is column-wise) or rows (if row-
wise) of the original matrix reduced by GEBRD.

• [in] A: pointer to type. Array on the GPU of size lda*min(q,k) if column-wise, or lda*q if row-
wise. The Householder vectors as returned by GEBRD.

• [in] lda: rocblas_int. lda >= q if column-wise, or lda >= min(q,k) if row-wise. Leading dimension
of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least min(q,k). The Householder
scalars as returned by GEBRD.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

rocsolver_<type>unmtr()

rocblas_status rocsolver_zunmtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill
uplo, const rocblas_operation trans, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv, rocblas_double_complex *C, const
rocblas_int ldc)

rocblas_status rocsolver_cunmtr(rocblas_handle handle, const rocblas_side side, const rocblas_fill
uplo, const rocblas_operation trans, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv, rocblas_float_complex *C, const
rocblas_int ldc)

UNMTR multiplies a unitary matrix Q by a general m-by-n matrix C.

The matrix Q is applied in one of the following forms, depending on the values of side and trans:

𝑄𝐶 No transpose from the left,
𝑄𝐻𝐶 Conjugate transpose from the left,
𝐶𝑄 No transpose from the right, and
𝐶𝑄𝐻 Conjugate transpose from the right.

The order q of the unitary matrix Q is q = m if applying from the left, or q = n if applying from the right.

Q is defined as a product of q-1 Householder reflectors. If uplo indicates upper, then Q has the form

𝑄 = 𝐻𝑞−1𝐻𝑞−2 · · ·𝐻1.

86 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

On the other hand, if uplo indicates lower, then Q has the form

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑞−1

The Householder matrices 𝐻𝑖 are never stored, they are computed from its corresponding Householder vectors
and scalars as returned by HETRD in its arguments A and tau.

Parameters

• [in] handle: rocblas_handle.

• [in] side: rocblas_side. Specifies from which side to apply Q.

• [in] uplo: rocblas_fill. Specifies whether the HETRD factorization was upper or lower triangular.
If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] trans: rocblas_operation. Specifies whether the matrix Q or its conjugate transpose is to be
applied.

• [in] m: rocblas_int. m >= 0. Number of rows of matrix C.

• [in] n: rocblas_int. n >= 0. Number of columns of matrix C.

• [in] A: pointer to type. Array on the GPU of size lda*q. On entry, the Householder vectors as
returned by HETRD.

• [in] lda: rocblas_int. lda >= q. Leading dimension of A.

• [in] ipiv: pointer to type. Array on the GPU of dimension at least q-1. The Householder scalars
as returned by HETRD.

• [inout] C: pointer to type. Array on the GPU of size ldc*n. On entry, the matrix C. On exit, it is
overwritten with Q*C, C*Q, Q’*C, or C*Q’.

• [in] ldc: rocblas_int. ldc >= m. Leading dimension of C.

3.3 LAPACK Functions

LAPACK routines solve complex Numerical Linear Algebra problems. These functions are organized in the following
categories:

• Triangular factorizations. Based on Gaussian elimination.

• Orthogonal factorizations. Based on Householder reflections.

• Problem and matrix reductions. Transformation of matrices and problems into equivalent forms.

• Linear-systems solvers. Based on triangular factorizations.

• Least-squares solvers. Based on orthogonal factorizations.

• Symmetric eigensolvers. Eigenproblems for symmetric matrices.

• Singular value decomposition. Singular values and related problems for general matrices.

Note: Throughout the APIs’ descriptions, we use the following notations:

• x[i] stands for the i-th element of vector x, while A[i,j] represents the element in the i-th row and j-th column of
matrix A. Indices are 1-based, i.e. x[1] is the first element of x.

3.3. LAPACK Functions 87



rocSOLVER Documentation, Release 3.18.0

• If X is a real vector or matrix, 𝑋𝑇 indicates its transpose; if X is complex, then 𝑋𝐻 represents its conjugate
transpose. When X could be real or complex, we use X’ to indicate X transposed or X conjugate transposed,
accordingly.

• x_i = 𝑥𝑖; we sometimes use both notations, 𝑥𝑖 when displaying mathematical equations, and x_i in the text
describing the function parameters.

3.3.1 Triangular factorizations

List of triangular factorizations

• rocsolver_<type>potf2()

• rocsolver_<type>potf2_batched()

• rocsolver_<type>potf2_strided_batched()

• rocsolver_<type>potrf()

• rocsolver_<type>potrf_batched()

• rocsolver_<type>potrf_strided_batched()

• rocsolver_<type>getf2()

• rocsolver_<type>getf2_batched()

• rocsolver_<type>getf2_strided_batched()

• rocsolver_<type>getrf()

• rocsolver_<type>getrf_batched()

• rocsolver_<type>getrf_strided_batched()

• rocsolver_<type>sytf2()

• rocsolver_<type>sytf2_batched()

• rocsolver_<type>sytf2_strided_batched()

• rocsolver_<type>sytrf()

• rocsolver_<type>sytrf_batched()

• rocsolver_<type>sytrf_strided_batched()

rocsolver_<type>potf2()

rocblas_status rocsolver_zpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_cpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_dpotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
double *A, const rocblas_int lda, rocblas_int *info)

88 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_spotf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *info)

POTF2 computes the Cholesky factorization of a real symmetric (complex Hermitian) positive definite matrix
A.

(This is the unblocked version of the algorithm).

The factorization has the form:

𝐴 = 𝑈 ′𝑈 if uplo is upper, or
𝐴 = 𝐿𝐿′ if uplo is lower.

U is an upper triangular matrix and L is lower triangular.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A to be
factored. On exit, the lower or upper triangular factor.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful factorization of matrix A.
If info = j > 0, the leading minor of order j of A is not positive definite. The factorization stopped at
this point.

rocsolver_<type>potf2_batched()

rocblas_status rocsolver_zpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dpotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_spotf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

POTF2_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian)
positive definite matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑖 in the batch has the form:

3.3. LAPACK Functions 89



rocSOLVER Documentation, Release 3.18.0

𝐴𝑖 = 𝑈 ′
𝑖𝑈𝑖 if uplo is upper, or

𝐴𝑖 = 𝐿𝑖𝐿
′
𝑖 if uplo is lower.

𝑈𝑖 is an upper triangular matrix and 𝐿𝑖 is lower triangular.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not
positive definite. The i-th factorization stopped at this point.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potf2_strided_batched()

rocblas_status rocsolver_zpotf2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cpotf2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int
lda, const rocblas_stride strideA, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dpotf2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_spotf2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

POTF2_STRIDED_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex
Hermitian) positive definite matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑖 in the batch has the form:

90 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐴𝑖 = 𝑈 ′
𝑖𝑈𝑖 if uplo is upper, or

𝐴𝑖 = 𝐿𝑖𝐿
′
𝑖 if uplo is lower.

𝑈𝑖 is an upper triangular matrix and 𝐿𝑖 is lower triangular.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i to be factored. On exit, the upper or lower triangular factors.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not
positive definite. The i-th factorization stopped at this point.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potrf()

rocblas_status rocsolver_zpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_cpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_dpotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
double *A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_spotrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *info)

POTRF computes the Cholesky factorization of a real symmetric (complex Hermitian) positive definite matrix
A.

(This is the blocked version of the algorithm).

The factorization has the form:

𝐴 = 𝑈 ′𝑈 if uplo is upper, or
𝐴 = 𝐿𝐿′ if uplo is lower.

U is an upper triangular matrix and L is lower triangular.

Parameters

3.3. LAPACK Functions 91



rocSOLVER Documentation, Release 3.18.0

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A to be
factored. On exit, the lower or upper triangular factor.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful factorization of matrix A.
If info = j > 0, the leading minor of order j of A is not positive definite. The factorization stopped at
this point.

rocsolver_<type>potrf_batched()

rocblas_status rocsolver_zpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dpotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_spotrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

POTRF_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex Hermitian)
positive definite matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑖 in the batch has the form:

𝐴𝑖 = 𝑈 ′
𝑖𝑈𝑖 if uplo is upper, or

𝐴𝑖 = 𝐿𝑖𝐿
′
𝑖 if uplo is lower.

𝑈𝑖 is an upper triangular matrix and 𝐿𝑖 is lower triangular.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i to be factored. On exit, the upper or lower triangular factors.

92 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not
positive definite. The i-th factorization stopped at this point.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>potrf_strided_batched()

rocblas_status rocsolver_zpotrf_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cpotrf_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int
lda, const rocblas_stride strideA, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dpotrf_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_spotrf_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

POTRF_STRIDED_BATCHED computes the Cholesky factorization of a batch of real symmetric (complex
Hermitian) positive definite matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑖 in the batch has the form:

𝐴𝑖 = 𝑈 ′
𝑖𝑈𝑖 if uplo is upper, or

𝐴𝑖 = 𝐿𝑖𝐿
′
𝑖 if uplo is lower.

𝑈𝑖 is an upper triangular matrix and 𝐿𝑖 is lower triangular.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i to be factored. On exit, the upper or lower triangular factors.

3.3. LAPACK Functions 93



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful factorization of matrix A_i. If info[i] = j > 0, the leading minor of order j of A_i is not
positive definite. The i-th factorization stopped at this point.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getf2()

rocblas_status rocsolver_zgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_cgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_dgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int
*info)

rocblas_status rocsolver_sgetf2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

GETF2 computes the LU factorization of a general m-by-n matrix A using partial pivoting with row inter-
changes.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

𝐴 = 𝑃𝐿𝑈

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n),
and U is upper triangular (upper trapezoidal if m < n).

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A
to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L
are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension min(m,n). The vector of pivot
indices. Elements of ipiv are 1-based indices. For 1 <= i <= min(m,n), the row i of the matrix was
interchanged with row ipiv[i]. Matrix P of the factorization can be derived from ipiv.

94 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is
singular. U[j,j] is the first zero pivot.

rocsolver_<type>getf2_batched()

rocblas_status rocsolver_zgetf2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgetf2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetf2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_sgetf2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

GETF2_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting
with row interchanges.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖

where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m >
n), and 𝑈𝑖 is upper triangular (upper trapezoidal if m < n).

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the
factorizations. The unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n).
Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n),

3.3. LAPACK Functions 95



rocSOLVER Documentation, Release 3.18.0

the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can
be derived from ipiv_i.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getf2_strided_batched()

rocblas_status rocsolver_zgetf2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetf2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetf2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sgetf2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

GETF2_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices using
partial pivoting with row interchanges.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖

where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m >
n), and 𝑈𝑖 is upper triangular (upper trapezoidal if m < n).

Parameters

96 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The
unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors of pivots indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n).
Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n),
the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can
be derived from ipiv_i.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf()

rocblas_status rocsolver_zgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_cgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_dgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int
*info)

rocblas_status rocsolver_sgetrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

GETRF computes the LU factorization of a general m-by-n matrix A using partial pivoting with row inter-
changes.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

𝐴 = 𝑃𝐿𝑈

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n),
and U is upper triangular (upper trapezoidal if m < n).

3.3. LAPACK Functions 97



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A
to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L
are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension min(m,n). The vector of pivot
indices. Elements of ipiv are 1-based indices. For 1 <= i <= min(m,n), the row i of the matrix was
interchanged with row ipiv[i]. Matrix P of the factorization can be derived from ipiv.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U is
singular. U[j,j] is the first zero pivot.

rocsolver_<type>getrf_batched()

rocblas_status rocsolver_zgetrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgetrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_sgetrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

GETRF_BATCHED computes the LU factorization of a batch of general m-by-n matrices using partial pivoting
with row interchanges.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖

where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m >
n), and 𝑈𝑖 is upper triangular (upper trapezoidal if m < n).

98 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the
factorizations. The unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n).
Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n),
the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can
be derived from ipiv_i.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_strided_batched()

rocblas_status rocsolver_zgetrf_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetrf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetrf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sgetrf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

GETRF_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices using
partial pivoting with row interchanges.

3.3. LAPACK Functions 99



rocSOLVER Documentation, Release 3.18.0

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖

where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m >
n), and 𝑈𝑖 is upper triangular (upper trapezoidal if m < n).

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The
unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors of pivots indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is min(m,n).
Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= min(m,n),
the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can
be derived from ipiv_i.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= min(m,n).

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytf2()

rocblas_status rocsolver_zsytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_csytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_dsytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int
*info)

100 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_ssytf2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

SYTF2 computes the factorization of a symmetric indefinite matrix 𝐴 using Bunch-Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴 = 𝑈𝐷𝑈𝑇 or
𝐴 = 𝐿𝐷𝐿𝑇

where 𝑈 or 𝐿 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷(𝑘).

Specifically, 𝑈 and 𝐿 are computed as

𝑈 = 𝑃 (𝑛)𝑈(𝑛) · · ·𝑃 (𝑘)𝑈(𝑘) · · · and
𝐿 = 𝑃 (1)𝐿(1) · · ·𝑃 (𝑘)𝐿(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷(𝑘),
and 𝑃 (𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣[𝑘]. If we let 𝑠 denote the order of block 𝐷(𝑘), then 𝑈(𝑘) and
𝐿(𝑘) are unit upper/lower triangular matrices defined as

𝑈(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
and

𝐿(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷(𝑘) is stored in 𝐴[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴. If 𝑠 = 2
and uplo is upper, then 𝐷(𝑘) is stored in 𝐴[𝑘 − 1, 𝑘 − 1], 𝐴[𝑘 − 1, 𝑘], and 𝐴[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴. If 𝑠 = 2 and uplo is lower, then 𝐷(𝑘) is stored in 𝐴[𝑘, 𝑘], 𝐴[𝑘 + 1, 𝑘], and
𝐴[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix
A to be factored. On exit, the block diagonal matrix D and the multipliers needed to compute U or L.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

3.3. LAPACK Functions 101



rocSOLVER Documentation, Release 3.18.0

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv[k] > 0 then rows and columns k and
ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0
and uplo is upper (or ipiv[k] = ipiv[k+1] < 0 and uplo is lower), then rows and columns k-1 and -
ipiv[k] (or rows and columns k+1 and -ipiv[k]) were interchanged and D[k-1,k-1] to D[k,k] (or D[k,k]
to D[k+1,k+1]) is a 2-by-2 diagonal block.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D
is singular. D[j,j] is the first diagonal zero.

rocsolver_<type>sytf2_batched()

rocblas_status rocsolver_zsytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_csytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dsytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_ssytf2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

SYTF2_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-
Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴𝑖 = 𝑈𝑖𝐷𝑖𝑈
𝑇
𝑖 or

𝐴𝑖 = 𝐿𝑖𝐷𝑖𝐿
𝑇
𝑖

where 𝑈𝑖 or 𝐿𝑖 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷𝑖 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷𝑖(𝑘).

Specifically, 𝑈𝑖 and 𝐿𝑖 are computed as

𝑈𝑖 = 𝑃𝑖(𝑛)𝑈𝑖(𝑛) · · ·𝑃𝑖(𝑘)𝑈𝑖(𝑘) · · · and
𝐿𝑖 = 𝑃𝑖(1)𝐿𝑖(1) · · ·𝑃𝑖(𝑘)𝐿𝑖(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷𝑖(𝑘),
and 𝑃𝑖(𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣𝑖[𝑘]. If we let 𝑠 denote the order of block 𝐷𝑖(𝑘), then 𝑈𝑖(𝑘)
and 𝐿𝑖(𝑘) are unit upper/lower triangular matrices defined as

102 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑈𝑖(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
and

𝐿𝑖(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴𝑖. If 𝑠 = 2 and
uplo is upper, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘 − 1, 𝑘 − 1], 𝐴𝑖[𝑘 − 1, 𝑘], and 𝐴𝑖[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴𝑖. If 𝑠 = 2 and uplo is lower, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘], 𝐴𝑖[𝑘 + 1, 𝑘],
and 𝐴𝑖[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i
and the multipliers needed to compute U_i or L_i.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and
ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-
1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns
k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to
D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal
zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 103



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sytf2_strided_batched()

rocblas_status rocsolver_zsytf2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_csytf2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dsytf2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_ssytf2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

SYTF2_STRIDED_BATCHED computes the factorization of a batch of symmetric indefinite matrices using
Bunch-Kaufman diagonal pivoting.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴𝑖 = 𝑈𝑖𝐷𝑖𝑈
𝑇
𝑖 or

𝐴𝑖 = 𝐿𝑖𝐷𝑖𝐿
𝑇
𝑖

where 𝑈𝑖 or 𝐿𝑖 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷𝑖 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷𝑖(𝑘).

Specifically, 𝑈𝑖 and 𝐿𝑖 are computed as

𝑈𝑖 = 𝑃𝑖(𝑛)𝑈𝑖(𝑛) · · ·𝑃𝑖(𝑘)𝑈𝑖(𝑘) · · · and
𝐿𝑖 = 𝑃𝑖(1)𝐿𝑖(1) · · ·𝑃𝑖(𝑘)𝐿𝑖(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷𝑖(𝑘),
and 𝑃𝑖(𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣𝑖[𝑘]. If we let 𝑠 denote the order of block 𝐷𝑖(𝑘), then 𝑈𝑖(𝑘)
and 𝐿𝑖(𝑘) are unit upper/lower triangular matrices defined as

𝑈𝑖(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
104 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

and

𝐿𝑖(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴𝑖. If 𝑠 = 2 and
uplo is upper, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘 − 1, 𝑘 − 1], 𝐴𝑖[𝑘 − 1, 𝑘], and 𝐴𝑖[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴𝑖. If 𝑠 = 2 and uplo is lower, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘], 𝐴𝑖[𝑘 + 1, 𝑘],
and 𝐴𝑖[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On
entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the
multipliers needed to compute U_i or L_i.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and
ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-
1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns
k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to
D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal
zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrf()

rocblas_status rocsolver_zsytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_csytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_int *info)

rocblas_status rocsolver_dsytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int
*info)

3.3. LAPACK Functions 105



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_ssytrf(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

SYTRF computes the factorization of a symmetric indefinite matrix 𝐴 using Bunch-Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴 = 𝑈𝐷𝑈𝑇 or
𝐴 = 𝐿𝐷𝐿𝑇

where 𝑈 or 𝐿 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷(𝑘).

Specifically, 𝑈 and 𝐿 are computed as

𝑈 = 𝑃 (𝑛)𝑈(𝑛) · · ·𝑃 (𝑘)𝑈(𝑘) · · · and
𝐿 = 𝑃 (1)𝐿(1) · · ·𝑃 (𝑘)𝐿(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷(𝑘),
and 𝑃 (𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣[𝑘]. If we let 𝑠 denote the order of block 𝐷(𝑘), then 𝑈(𝑘) and
𝐿(𝑘) are unit upper/lower triangular matrices defined as

𝑈(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
and

𝐿(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷(𝑘) is stored in 𝐴[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴. If 𝑠 = 2
and uplo is upper, then 𝐷(𝑘) is stored in 𝐴[𝑘 − 1, 𝑘 − 1], 𝐴[𝑘 − 1, 𝑘], and 𝐴[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴. If 𝑠 = 2 and uplo is lower, then 𝐷(𝑘) is stored in 𝐴[𝑘, 𝑘], 𝐴[𝑘 + 1, 𝑘], and
𝐴[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix
A to be factored. On exit, the block diagonal matrix D and the multipliers needed to compute U or L.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

106 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv[k] > 0 then rows and columns k and
ipiv[k] were interchanged and D[k,k] is a 1-by-1 diagonal block. If, instead, ipiv[k] = ipiv[k-1] < 0
and uplo is upper (or ipiv[k] = ipiv[k+1] < 0 and uplo is lower), then rows and columns k-1 and -
ipiv[k] (or rows and columns k+1 and -ipiv[k]) were interchanged and D[k-1,k-1] to D[k,k] (or D[k,k]
to D[k+1,k+1]) is a 2-by-2 diagonal block.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info[i] = j > 0, D
is singular. D[j,j] is the first diagonal zero.

rocsolver_<type>sytrf_batched()

rocblas_status rocsolver_zsytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_csytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dsytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_ssytrf_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

SYTRF_BATCHED computes the factorization of a batch of symmetric indefinite matrices using Bunch-
Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴𝑖 = 𝑈𝑖𝐷𝑖𝑈
𝑇
𝑖 or

𝐴𝑖 = 𝐿𝑖𝐷𝑖𝐿
𝑇
𝑖

where 𝑈𝑖 or 𝐿𝑖 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷𝑖 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷𝑖(𝑘).

Specifically, 𝑈𝑖 and 𝐿𝑖 are computed as

𝑈𝑖 = 𝑃𝑖(𝑛)𝑈𝑖(𝑛) · · ·𝑃𝑖(𝑘)𝑈𝑖(𝑘) · · · and
𝐿𝑖 = 𝑃𝑖(1)𝐿𝑖(1) · · ·𝑃𝑖(𝑘)𝐿𝑖(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷𝑖(𝑘),
and 𝑃𝑖(𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣𝑖[𝑘]. If we let 𝑠 denote the order of block 𝐷𝑖(𝑘), then 𝑈𝑖(𝑘)
and 𝐿𝑖(𝑘) are unit upper/lower triangular matrices defined as

3.3. LAPACK Functions 107



rocSOLVER Documentation, Release 3.18.0

𝑈𝑖(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
and

𝐿𝑖(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴𝑖. If 𝑠 = 2 and
uplo is upper, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘 − 1, 𝑘 − 1], 𝐴𝑖[𝑘 − 1, 𝑘], and 𝐴𝑖[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴𝑖. If 𝑠 = 2 and uplo is lower, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘], 𝐴𝑖[𝑘 + 1, 𝑘],
and 𝐴𝑖[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i
and the multipliers needed to compute U_i or L_i.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and
ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-
1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns
k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to
D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal
zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

108 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sytrf_strided_batched()

rocblas_status rocsolver_zsytrf_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_csytrf_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dsytrf_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_ssytrf_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

SYTRF_STRIDED_BATCHED computes the factorization of a batch of symmetric indefinite matrices using
Bunch-Kaufman diagonal pivoting.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴𝑖 = 𝑈𝑖𝐷𝑖𝑈
𝑇
𝑖 or

𝐴𝑖 = 𝐿𝑖𝐷𝑖𝐿
𝑇
𝑖

where 𝑈𝑖 or 𝐿𝑖 is a product of permutation and unit upper/lower triangular matrices (depending on the value of
uplo), and 𝐷𝑖 is a symmetric block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks 𝐷𝑖(𝑘).

Specifically, 𝑈𝑖 and 𝐿𝑖 are computed as

𝑈𝑖 = 𝑃𝑖(𝑛)𝑈𝑖(𝑛) · · ·𝑃𝑖(𝑘)𝑈𝑖(𝑘) · · · and
𝐿𝑖 = 𝑃𝑖(1)𝐿𝑖(1) · · ·𝑃𝑖(𝑘)𝐿𝑖(𝑘) · · ·

where 𝑘 decreases from 𝑛 to 1 (increases from 1 to 𝑛) in steps of 1 or 2, depending on the order of block 𝐷𝑖(𝑘),
and 𝑃𝑖(𝑘) is a permutation matrix defined by 𝑖𝑝𝑖𝑣𝑖[𝑘]. If we let 𝑠 denote the order of block 𝐷𝑖(𝑘), then 𝑈𝑖(𝑘)
and 𝐿𝑖(𝑘) are unit upper/lower triangular matrices defined as

𝑈𝑖(𝑘) =

⎡⎣ 𝐼𝑘−𝑠 𝑣 0
0 𝐼𝑠 0
0 0 𝐼𝑛−𝑘

⎤⎦
3.3. LAPACK Functions 109



rocSOLVER Documentation, Release 3.18.0

and

𝐿𝑖(𝑘) =

⎡⎣ 𝐼𝑘−1 0 0
0 𝐼𝑠 0
0 𝑣 𝐼𝑛−𝑘−𝑠+1

⎤⎦ .

If 𝑠 = 1, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘] and 𝑣 is stored in the upper/lower part of column 𝑘 of 𝐴𝑖. If 𝑠 = 2 and
uplo is upper, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘 − 1, 𝑘 − 1], 𝐴𝑖[𝑘 − 1, 𝑘], and 𝐴𝑖[𝑘, 𝑘], and 𝑣 is stored in the upper
parts of columns 𝑘 − 1 and 𝑘 of 𝐴𝑖. If 𝑠 = 2 and uplo is lower, then 𝐷𝑖(𝑘) is stored in 𝐴𝑖[𝑘, 𝑘], 𝐴𝑖[𝑘 + 1, 𝑘],
and 𝐴𝑖[𝑘 + 1, 𝑘 + 1], and 𝑣 is stored in the lower parts of columns 𝑘 and 𝑘 + 1 of 𝐴𝑖.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_i is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On
entry, the symmetric matrices A_i to be factored. On exit, the block diagonal matrices D_i and the
multipliers needed to compute U_i or L_i.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The vector of pivot indices.
Elements of ipiv are 1-based indices. For 1 <= k <= n, if ipiv_i[k] > 0 then rows and columns k and
ipiv_i[k] were interchanged and D_i[k,k] is a 1-by-1 diagonal block. If, instead, ipiv_i[k] = ipiv_i[k-
1] < 0 and uplo is upper (or ipiv_i[k] = ipiv_i[k+1] < 0 and uplo is lower), then rows and columns
k-1 and -ipiv_i[k] (or rows and columns k+1 and -ipiv_i[k]) were interchanged and D_i[k-1,k-1] to
D_i[k,k] (or D_i[k,k] to D_i[k+1,k+1]) is a 2-by-2 diagonal block.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_i to the next one ipiv_(i+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, D_i is singular. D_i[j,j] is the first diagonal
zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.2 Orthogonal factorizations

List of orthogonal factorizations

• rocsolver_<type>geqr2()

• rocsolver_<type>geqr2_batched()

• rocsolver_<type>geqr2_strided_batched()

• rocsolver_<type>geqrf()

110 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• rocsolver_<type>geqrf_batched()

• rocsolver_<type>geqrf_strided_batched()

• rocsolver_<type>gerq2()

• rocsolver_<type>gerq2_batched()

• rocsolver_<type>gerq2_strided_batched()

• rocsolver_<type>gerqf()

• rocsolver_<type>gerqf_batched()

• rocsolver_<type>gerqf_strided_batched()

• rocsolver_<type>geql2()

• rocsolver_<type>geql2_batched()

• rocsolver_<type>geql2_strided_batched()

• rocsolver_<type>geqlf()

• rocsolver_<type>geqlf_batched()

• rocsolver_<type>geqlf_strided_batched()

• rocsolver_<type>gelq2()

• rocsolver_<type>gelq2_batched()

• rocsolver_<type>gelq2_strided_batched()

• rocsolver_<type>gelqf()

• rocsolver_<type>gelqf_batched()

• rocsolver_<type>gelqf_strided_batched()

rocsolver_<type>geqr2()

rocblas_status rocsolver_zgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgeqr2(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgeqr2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GEQR2 computes a QR factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴 = 𝑄

[︂
𝑅
0

]︂

3.3. LAPACK Functions 111



rocSOLVER Documentation, Release 3.18.0

where R is upper triangular (upper trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘, with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to
be factored. On exit, the elements on and above the diagonal contain the factor R; the elements below
the diagonal are the last m - i elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geqr2_batched()

rocblas_status rocsolver_zgeqr2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqr2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgeqr2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgeqr2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GEQR2_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

112 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐴𝑗 = 𝑄𝑗

[︂
𝑅𝑗

0

]︂
where 𝑅𝑗 is upper triangular (upper trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑘 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the
diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of
Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqr2_strided_batched()

rocblas_status rocsolver_zgeqr2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

3.3. LAPACK Functions 113



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dgeqr2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgeqr2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GEQR2_STRIDED_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
𝑅𝑗

0

]︂
where 𝑅𝑗 is upper triangular (upper trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑘 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the
factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

114 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>geqrf()

rocblas_status rocsolver_zgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgeqrf(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgeqrf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GEQRF computes a QR factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴 = 𝑄

[︂
𝑅
0

]︂

where R is upper triangular (upper trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑘, with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to
be factored. On exit, the elements on and above the diagonal contain the factor R; the elements below
the diagonal are the last m - i elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

3.3. LAPACK Functions 115



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>geqrf_batched()

rocblas_status rocsolver_zgeqrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgeqrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgeqrf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GEQRF_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
𝑅𝑗

0

]︂
where 𝑅𝑗 is upper triangular (upper trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑘 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the
diagonal contain the factor R_j. The elements below the diagonal are the last m - i elements of
Householder vector v_(j_i).

116 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqrf_strided_batched()

rocblas_status rocsolver_zgeqrf_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgeqrf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgeqrf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GEQRF_STRIDED_BATCHED computes the QR factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
𝑅𝑗

0

]︂
where 𝑅𝑗 is upper triangular (upper trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑘 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

3.3. LAPACK Functions 117



rocSOLVER Documentation, Release 3.18.0

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and above the diagonal contain the
factor R_j. The elements below the diagonal are the last m - i elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerq2()

rocblas_status rocsolver_zgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgerq2(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgerq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GERQ2 computes a RQ factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴 =
[︀

0 𝑅
]︀
𝑄

where R is upper triangular (upper trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented
as the product of Householder matrices

𝑄 = 𝐻 ′
1𝐻

′
2 · · ·𝐻 ′

𝑘, with 𝑘 = min(𝑚,𝑛).

Each Householder matrix 𝐻𝑖 is given by

118 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the last n-i elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the
(n-m)-th superdiagonal (when n > m) contain the factor R; the elements below the sub/superdiagonal
are the first i - 1 elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gerq2_batched()

rocblas_status rocsolver_zgerq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgerq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgerq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgerq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GERQ2_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀

0 𝑅𝑗

]︀
𝑄𝑗

where 𝑅𝑗 is upper triangular (upper trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

3.3. LAPACK Functions 119



rocSOLVER Documentation, Release 3.18.0

𝑄𝑗 = 𝐻 ′
𝑗1𝐻

′
𝑗2 · · ·𝐻

′
𝑗𝑘
, with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last n-i elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-
n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j;
the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerq2_strided_batched()

rocblas_status rocsolver_zgerq2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgerq2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgerq2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

120 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgerq2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GERQ2_STRIDED_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀

0 𝑅𝑗

]︀
𝑄𝑗

where 𝑅𝑗 is upper triangular (upper trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗1𝐻

′
𝑗2 · · ·𝐻

′
𝑗𝑘
, with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last n-i elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal
(when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below
the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 121



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>gerqf()

rocblas_status rocsolver_zgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgerqf(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgerqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GERQF computes a RQ factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴 =
[︀

0 𝑅
]︀
𝑄

where R is upper triangular (upper trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented
as the product of Householder matrices

𝑄 = 𝐻 ′
1𝐻

′
2 · · ·𝐻 ′

𝑘, with 𝑘 = min(𝑚,𝑛).

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the last n-i elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on and above the (m-n)-th subdiagonal (when m >= n) or the
(n-m)-th superdiagonal (when n > m) contain the factor R; the elements below the sub/superdiagonal
are the first i - 1 elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

122 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>gerqf_batched()

rocblas_status rocsolver_zgerqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgerqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgerqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgerqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GERQF_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀

0 𝑅𝑗

]︀
𝑄𝑗

where 𝑅𝑗 is upper triangular (upper trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗1𝐻

′
𝑗2 · · ·𝐻

′
𝑗𝑘
, with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last n-i elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-
n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j;
the elements below the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

3.3. LAPACK Functions 123



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gerqf_strided_batched()

rocblas_status rocsolver_zgerqf_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgerqf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgerqf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgerqf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GERQF_STRIDED_BATCHED computes the RQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀

0 𝑅𝑗

]︀
𝑄𝑗

where 𝑅𝑗 is upper triangular (upper trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗1𝐻

′
𝑗2 · · ·𝐻

′
𝑗𝑘
, with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

124 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

where the last n-i elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and above the (m-n)-th subdiagonal
(when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor R_j; the elements below
the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geql2()

rocblas_status rocsolver_zgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgeql2(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgeql2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GEQL2 computes a QL factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴 = 𝑄

[︂
0
𝐿

]︂

where L is lower triangular (lower trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1, with 𝑘 = min(𝑚,𝑛)

3.3. LAPACK Functions 125



rocSOLVER Documentation, Release 3.18.0

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the last m-i elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the
(n-m)-th superdiagonal (when n > m) contain the factor L; the elements above the sub/superdiagonal
are the first i - 1 elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>geql2_batched()

rocblas_status rocsolver_zgeql2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeql2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgeql2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgeql2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GEQL2_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
0
𝐿𝑗

]︂

where 𝐿𝑗 is lower triangular (lower trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

126 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑄 = 𝐻𝑗𝑘𝐻𝑗𝑘−1
· · ·𝐻𝑗1 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last m-i elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-
n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j;
the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geql2_strided_batched()

rocblas_status rocsolver_zgeql2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeql2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgeql2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

3.3. LAPACK Functions 127



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgeql2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GEQL2_STRIDED_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
0
𝐿𝑗

]︂

where 𝐿𝑗 is lower triangular (lower trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻𝑗𝑘𝐻𝑗𝑘−1
· · ·𝐻𝑗1 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last m-i elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal
(when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above
the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

128 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>geqlf()

rocblas_status rocsolver_zgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgeqlf(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgeqlf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GEQLF computes a QL factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴 = 𝑄

[︂
0
𝐿

]︂

where L is lower triangular (lower trapezoidal if m < n), and Q is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻𝑘𝐻𝑘−1 · · ·𝐻1, with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣𝑖𝑣′𝑖

where the last m-i elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on and below the (m-n)-th subdiagonal (when m >= n) or the
(n-m)-th superdiagonal (when n > m) contain the factor L; the elements above the sub/superdiagonal
are the first i - 1 elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

3.3. LAPACK Functions 129



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>geqlf_batched()

rocblas_status rocsolver_zgeqlf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqlf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgeqlf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgeqlf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GEQLF_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
0
𝐿𝑗

]︂
where 𝐿𝑗 is lower triangular (lower trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻𝑗𝑘𝐻𝑗𝑘−1
· · ·𝐻𝑗1 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where the last m-i elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-
n)-th subdiagonal (when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j;
the elements above the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

130 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>geqlf_strided_batched()

rocblas_status rocsolver_zgeqlf_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgeqlf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgeqlf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GEQLF_STRIDED_BATCHED computes the QL factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 = 𝑄𝑗

[︂
0
𝐿𝑗

]︂
where 𝐿𝑗 is lower triangular (lower trapezoidal if m < n), and 𝑄𝑗 is a m-by-m orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄 = 𝐻𝑗𝑘𝐻𝑗𝑘−1
· · ·𝐻𝑗1 , with 𝑘 = min(𝑚,𝑛)

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

3.3. LAPACK Functions 131



rocSOLVER Documentation, Release 3.18.0

where the last m-i elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and below the (m-n)-th subdiagonal
(when m >= n) or the (n-m)-th superdiagonal (when n > m) contain the factor L_j; the elements above
the sub/superdiagonal are the first i - 1 elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelq2()

rocblas_status rocsolver_zgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgelq2(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

rocblas_status rocsolver_sgelq2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GELQ2 computes a LQ factorization of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The factorization has the form

𝐴 =
[︀
𝐿 0

]︀
𝑄

where L is lower triangular (lower trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented
as the product of Householder matrices

𝑄 = 𝐻 ′
𝑘𝐻

′
𝑘−1 · · ·𝐻 ′

1, with 𝑘 = min(𝑚,𝑛).

Each Householder matrix 𝐻𝑖 is given by

132 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣′𝑖𝑣𝑖

where the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to
be factored. On exit, the elements on and below the diagonal contain the factor L; the elements above
the diagonal are the last n - i elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gelq2_batched()

rocblas_status rocsolver_zgelq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgelq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgelq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_sgelq2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GELQ2_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀
𝐿𝑗 0

]︀
𝑄𝑗

where 𝐿𝑗 is lower triangular (lower trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗𝑘
𝐻 ′

𝑗𝑘−1
· · ·𝐻 ′

𝑗1 , with 𝑘 = min(𝑚,𝑛).

3.3. LAPACK Functions 133



rocSOLVER Documentation, Release 3.18.0

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣′𝑗𝑖𝑣𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diag-
onal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder
vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelq2_strided_batched()

rocblas_status rocsolver_zgelq2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgelq2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgelq2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgelq2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GELQ2_STRIDED_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

134 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

(This is the unblocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀
𝐿𝑗 0

]︀
𝑄𝑗

where 𝐿𝑗 is lower triangular (lower trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗𝑘
𝐻 ′

𝑗𝑘−1
· · ·𝐻 ′

𝑗1 , with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣′𝑗𝑖𝑣𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the
factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gelqf()

rocblas_status rocsolver_zgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *ipiv)

rocblas_status rocsolver_cgelqf(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *ipiv)

rocblas_status rocsolver_dgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *ipiv)

3.3. LAPACK Functions 135



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgelqf(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *ipiv)

GELQF computes a LQ factorization of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The factorization has the form

𝐴 =
[︀
𝐿 0

]︀
𝑄

where L is lower triangular (lower trapezoidal if m > n), and Q is a n-by-n orthogonal/unitary matrix represented
as the product of Householder matrices

𝑄 = 𝐻 ′
𝑘𝐻

′
𝑘−1 · · ·𝐻 ′

1, with 𝑘 = min(𝑚,𝑛).

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − ipiv[𝑖] · 𝑣′𝑖𝑣𝑖

where the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix to
be factored. On exit, the elements on and below the diagonal contain the factor L; the elements above
the diagonal are the last n - i elements of Householder vector v_i.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] ipiv: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars.

rocsolver_<type>gelqf_batched()

rocblas_status rocsolver_zgelqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_double_complex *ipiv,
const rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgelqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *ipiv, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgelqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

136 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgelqf_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int
lda, float *ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

GELQF_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀
𝐿𝑗 0

]︀
𝑄𝑗

where 𝐿𝑗 is lower triangular (lower trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗𝑘
𝐻 ′

𝑗𝑘−1
· · ·𝐻 ′

𝑗1 , with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣′𝑗𝑖𝑣𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on and below the diag-
onal contain the factor L_j. The elements above the diagonal are the last n - i elements of Householder
vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 137



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>gelqf_strided_batched()

rocblas_status rocsolver_zgelqf_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_double_complex *ipiv, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgelqf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*ipiv, const rocblas_stride strideP, const
rocblas_int batch_count)

rocblas_status rocsolver_dgelqf_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgelqf_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *ipiv, const rocblas_stride strideP,
const rocblas_int batch_count)

GELQF_STRIDED_BATCHED computes the LQ factorization of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

The factorization of matrix 𝐴𝑗 in the batch has the form

𝐴𝑗 =
[︀
𝐿𝑗 0

]︀
𝑄𝑗

where 𝐿𝑗 is lower triangular (lower trapezoidal if m > n), and 𝑄𝑗 is a n-by-n orthogonal/unitary matrix repre-
sented as the product of Householder matrices

𝑄𝑗 = 𝐻 ′
𝑗𝑘
𝐻 ′

𝑗𝑘−1
· · ·𝐻 ′

𝑗1 , with 𝑘 = min(𝑚,𝑛).

Each Householder matrices 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − ipiv𝑗 [𝑖] · 𝑣′𝑗𝑖𝑣𝑗𝑖

where the first i-1 elements of Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

138 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on and below the diagonal contain the
factor L_j. The elements above the diagonal are the last n - i elements of Householder vector v_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors ipiv_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.3 Problem and matrix reductions

List of reductions

• rocsolver_<type>gebd2()

• rocsolver_<type>gebd2_batched()

• rocsolver_<type>gebd2_strided_batched()

• rocsolver_<type>gebrd()

• rocsolver_<type>gebrd_batched()

• rocsolver_<type>gebrd_strided_batched()

• rocsolver_<type>sytd2()

• rocsolver_<type>sytd2_batched()

• rocsolver_<type>sytd2_strided_batched()

• rocsolver_<type>hetd2()

• rocsolver_<type>hetd2_batched()

• rocsolver_<type>hetd2_strided_batched()

• rocsolver_<type>sytrd()

• rocsolver_<type>sytrd_batched()

• rocsolver_<type>sytrd_strided_batched()

• rocsolver_<type>hetrd()

• rocsolver_<type>hetrd_batched()

• rocsolver_<type>hetrd_strided_batched()

• rocsolver_<type>sygs2()

• rocsolver_<type>sygs2_batched()

• rocsolver_<type>sygs2_strided_batched()

3.3. LAPACK Functions 139



rocSOLVER Documentation, Release 3.18.0

• rocsolver_<type>hegs2()

• rocsolver_<type>hegs2_batched()

• rocsolver_<type>hegs2_strided_batched()

• rocsolver_<type>sygst()

• rocsolver_<type>sygst_batched()

• rocsolver_<type>sygst_strided_batched()

• rocsolver_<type>hegst()

• rocsolver_<type>hegst_batched()

• rocsolver_<type>hegst_strided_batched()

rocsolver_<type>gebd2()

rocblas_status rocsolver_zgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, double *D,
double *E, rocblas_double_complex *tauq, rocblas_double_complex
*taup)

rocblas_status rocsolver_cgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, float *D, float *E,
rocblas_float_complex *tauq, rocblas_float_complex *taup)

rocblas_status rocsolver_dgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *D, double *E, double
*tauq, double *taup)

rocblas_status rocsolver_sgebd2(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *D, float *E, float *tauq, float
*taup)

GEBD2 computes the bidiagonal form of a general m-by-n matrix A.

(This is the unblocked version of the algorithm).

The bidiagonal form is given by:

𝐵 = 𝑄′𝐴𝑃

where B is upper bidiagonal if m >= n and lower bidiagonal if m < n, and Q and P are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛 and 𝑃 = 𝐺1𝐺2 · · ·𝐺𝑛−1, if 𝑚 >= 𝑛, or
𝑄 = 𝐻1𝐻2 · · ·𝐻𝑚−1 and 𝑃 = 𝐺1𝐺2 · · ·𝐺𝑚, if 𝑚 < 𝑛.

Each Householder matrix 𝐻𝑖 and 𝐺𝑖 is given by

𝐻𝑖 = 𝐼 − tauq[𝑖] · 𝑣𝑖𝑣′𝑖, and
𝐺𝑖 = 𝐼 − taup[𝑖] · 𝑢′

𝑖𝑢𝑖.

140 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖+ 1] = 1. If m < n, the first i elements of the Householder vector
𝑣𝑖 are zero, and 𝑣𝑖[𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal
(if m < n) contain the bidiagonal form B. If m >= n, the elements below the diagonal are the last m -
i elements of Householder vector v_i, and the elements above the superdiagonal are the last n - i - 1
elements of Householder vector u_i. If m < n, the elements below the subdiagonal are the last m - i -
1 elements of Householder vector v_i, and the elements above the diagonal are the last n - i elements
of Householder vector u_i.

• [in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

• [out] D: pointer to real type. Array on the GPU of dimension min(m,n). The diagonal elements of
B.

• [out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. The off-diagonal ele-
ments of B.

• [out] tauq: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars
associated with matrix Q.

• [out] taup: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars
associated with matrix P.

rocsolver_<type>gebd2_batched()

rocblas_status rocsolver_zgebd2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride strideE,
rocblas_double_complex *tauq, const rocblas_stride
strideQ, rocblas_double_complex *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_cgebd2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride strideE,
rocblas_float_complex *tauq, const rocblas_stride
strideQ, rocblas_float_complex *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_dgebd2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, dou-
ble *E, const rocblas_stride strideE, double *tauq,
const rocblas_stride strideQ, double *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

3.3. LAPACK Functions 141



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgebd2_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int lda,
float *D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, float *tauq, const rocblas_stride
strideQ, float *taup, const rocblas_stride strideP, const
rocblas_int batch_count)

GEBD2_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

𝐵𝑗 = 𝑄′
𝑗𝐴𝑗𝑃𝑗

where 𝐵𝑗 is upper bidiagonal if m >= n and lower bidiagonal if m < n, and 𝑄𝑗 and 𝑃𝑗 are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑛−1
, if 𝑚 >= 𝑛, or

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑚−1
and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑚 , if 𝑚 < 𝑛.

Each Householder matrix 𝐻𝑗𝑖 and 𝐺𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tauq𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖 , and
𝐺𝑗𝑖 = 𝐼 − taup𝑗 [𝑖] · 𝑢′

𝑗𝑖
𝑢𝑗𝑖 .

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑗𝑖 are zero, and 𝑢𝑗𝑖 [𝑖 + 1] = 1. If m < n, the first i elements of the Householder
vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑗𝑖 are zero, and
𝑢𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and
superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n,
the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the
elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m <
n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i),
and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of B_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

142 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of B_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains
the vectors tauq_j of Householder scalars associated with matrices Q_j.

• [in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1).
There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

• [out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors taup_j of Householder scalars associated with matrices P_j.

• [in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebd2_strided_batched()

rocblas_status rocsolver_zgebd2_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_double_complex
*tauq, const rocblas_stride strideQ,
rocblas_double_complex *taup, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgebd2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, float *D, const
rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_float_complex
*tauq, const rocblas_stride strideQ,
rocblas_float_complex *taup, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_dgebd2_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
double *tauq, const rocblas_stride strideQ,
double *taup, const rocblas_stride strideP,
const rocblas_int batch_count)

3.3. LAPACK Functions 143



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgebd2_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *D, const rocblas_stride strideD,
float *E, const rocblas_stride strideE, float
*tauq, const rocblas_stride strideQ, float
*taup, const rocblas_stride strideP, const
rocblas_int batch_count)

GEBD2_STRIDED_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the unblocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

𝐵𝑗 = 𝑄′
𝑗𝐴𝑗𝑃𝑗

where 𝐵𝑗 is upper bidiagonal if m >= n and lower bidiagonal if m < n, and 𝑄𝑗 and 𝑃𝑗 are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑛−1
, if 𝑚 >= 𝑛, or

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑚−1 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑚 , if 𝑚 < 𝑛.

Each Householder matrix 𝐻𝑗𝑖 and 𝐺𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tauq𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖 , and
𝐺𝑗𝑖 = 𝐼 − taup𝑗 [𝑖] · 𝑢′

𝑗𝑖
𝑢𝑗𝑖 .

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑗𝑖 are zero, and 𝑢𝑗𝑖 [𝑖 + 1] = 1. If m < n, the first i elements of the Householder
vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑗𝑖 are zero, and
𝑢𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if
m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below
the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the
superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements
below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements
above the diagonal are the last n - i elements of Householder vector u_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

144 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of B_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of B_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains
the vectors tauq_j of Householder scalars associated with matrices Q_j.

• [in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1).
There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

• [out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors taup_j of Householder scalars associated with matrices P_j.

• [in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebrd()

rocblas_status rocsolver_zgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, double *D,
double *E, rocblas_double_complex *tauq, rocblas_double_complex
*taup)

rocblas_status rocsolver_cgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, float *D, float *E,
rocblas_float_complex *tauq, rocblas_float_complex *taup)

rocblas_status rocsolver_dgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, double *D, double *E, double
*tauq, double *taup)

rocblas_status rocsolver_sgebrd(rocblas_handle handle, const rocblas_int m, const rocblas_int n,
float *A, const rocblas_int lda, float *D, float *E, float *tauq, float
*taup)

GEBRD computes the bidiagonal form of a general m-by-n matrix A.

(This is the blocked version of the algorithm).

The bidiagonal form is given by:

𝐵 = 𝑄′𝐴𝑃

where B is upper bidiagonal if m >= n and lower bidiagonal if m < n, and Q and P are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛 and 𝑃 = 𝐺1𝐺2 · · ·𝐺𝑛−1, if 𝑚 >= 𝑛, or
𝑄 = 𝐻1𝐻2 · · ·𝐻𝑚−1 and 𝑃 = 𝐺1𝐺2 · · ·𝐺𝑚, if 𝑚 < 𝑛.

3.3. LAPACK Functions 145



rocSOLVER Documentation, Release 3.18.0

Each Householder matrix 𝐻𝑖 and 𝐺𝑖 is given by

𝐻𝑖 = 𝐼 − tauq[𝑖] · 𝑣𝑖𝑣′𝑖, and
𝐺𝑖 = 𝐼 − taup[𝑖] · 𝑢′

𝑖𝑢𝑖.

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖+ 1] = 1. If m < n, the first i elements of the Householder vector
𝑣𝑖 are zero, and 𝑣𝑖[𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑖 are zero, and 𝑢𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix
to be factored. On exit, the elements on the diagonal and superdiagonal (if m >= n), or subdiagonal
(if m < n) contain the bidiagonal form B. If m >= n, the elements below the diagonal are the last m -
i elements of Householder vector v_i, and the elements above the superdiagonal are the last n - i - 1
elements of Householder vector u_i. If m < n, the elements below the subdiagonal are the last m - i -
1 elements of Householder vector v_i, and the elements above the diagonal are the last n - i elements
of Householder vector u_i.

• [in] lda: rocblas_int. lda >= m. specifies the leading dimension of A.

• [out] D: pointer to real type. Array on the GPU of dimension min(m,n). The diagonal elements of
B.

• [out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. The off-diagonal ele-
ments of B.

• [out] tauq: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars
associated with matrix Q.

• [out] taup: pointer to type. Array on the GPU of dimension min(m,n). The Householder scalars
associated with matrix P.

rocsolver_<type>gebrd_batched()

rocblas_status rocsolver_zgebrd_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride strideE,
rocblas_double_complex *tauq, const rocblas_stride
strideQ, rocblas_double_complex *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_cgebrd_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride strideE,
rocblas_float_complex *tauq, const rocblas_stride
strideQ, rocblas_float_complex *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

146 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dgebrd_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, dou-
ble *E, const rocblas_stride strideE, double *tauq,
const rocblas_stride strideQ, double *taup, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_sgebrd_batched(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *const A[], const rocblas_int lda,
float *D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, float *tauq, const rocblas_stride
strideQ, float *taup, const rocblas_stride strideP, const
rocblas_int batch_count)

GEBRD_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

𝐵𝑗 = 𝑄′
𝑗𝐴𝑗𝑃𝑗

where 𝐵𝑗 is upper bidiagonal if m >= n and lower bidiagonal if m < n, and 𝑄𝑗 and 𝑃𝑗 are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑛−1
, if 𝑚 >= 𝑛, or

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑚−1
and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑚 , if 𝑚 < 𝑛.

Each Householder matrix 𝐻𝑗𝑖 and 𝐺𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tauq𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖 , and
𝐺𝑗𝑖 = 𝐼 − taup𝑗 [𝑖] · 𝑢′

𝑗𝑖
𝑢𝑗𝑖 .

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑗𝑖 are zero, and 𝑢𝑗𝑖 [𝑖 + 1] = 1. If m < n, the first i elements of the Householder
vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑗𝑖 are zero, and
𝑢𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and
superdiagonal (if m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n,
the elements below the diagonal are the last m - i elements of Householder vector v_(j_i), and the
elements above the superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m <
n, the elements below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i),
and the elements above the diagonal are the last n - i elements of Householder vector u_(j_i).

3.3. LAPACK Functions 147



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of B_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of B_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains
the vectors tauq_j of Householder scalars associated with matrices Q_j.

• [in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1).
There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

• [out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors taup_j of Householder scalars associated with matrices P_j.

• [in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gebrd_strided_batched()

rocblas_status rocsolver_zgebrd_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_double_complex
*tauq, const rocblas_stride strideQ,
rocblas_double_complex *taup, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_cgebrd_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, float *D, const
rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_float_complex
*tauq, const rocblas_stride strideQ,
rocblas_float_complex *taup, const
rocblas_stride strideP, const rocblas_int
batch_count)

148 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dgebrd_strided_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
double *tauq, const rocblas_stride strideQ,
double *taup, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_sgebrd_strided_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *D, const rocblas_stride strideD,
float *E, const rocblas_stride strideE, float
*tauq, const rocblas_stride strideQ, float
*taup, const rocblas_stride strideP, const
rocblas_int batch_count)

GEBRD_STRIDED_BATCHED computes the bidiagonal form of a batch of general m-by-n matrices.

(This is the blocked version of the algorithm).

For each instance in the batch, the bidiagonal form is given by:

𝐵𝑗 = 𝑄′
𝑗𝐴𝑗𝑃𝑗

where 𝐵𝑗 is upper bidiagonal if m >= n and lower bidiagonal if m < n, and 𝑄𝑗 and 𝑃𝑗 are orthogonal/unitary
matrices represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑛−1
, if 𝑚 >= 𝑛, or

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑚−1 and 𝑃𝑗 = 𝐺𝑗1𝐺𝑗2 · · ·𝐺𝑗𝑚 , if 𝑚 < 𝑛.

Each Householder matrix 𝐻𝑗𝑖 and 𝐺𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tauq𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖 , and
𝐺𝑗𝑖 = 𝐼 − taup𝑗 [𝑖] · 𝑢′

𝑗𝑖
𝑢𝑗𝑖 .

If m >= n, the first i-1 elements of the Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1; while the first i elements
of the Householder vector 𝑢𝑗𝑖 are zero, and 𝑢𝑗𝑖 [𝑖 + 1] = 1. If m < n, the first i elements of the Householder
vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1; while the first i-1 elements of the Householder vector 𝑢𝑗𝑖 are zero, and
𝑢𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all the matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all the matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_j to be factored. On exit, the elements on the diagonal and superdiagonal (if
m >= n), or subdiagonal (if m < n) contain the bidiagonal form B_j. If m >= n, the elements below

3.3. LAPACK Functions 149



rocSOLVER Documentation, Release 3.18.0

the diagonal are the last m - i elements of Householder vector v_(j_i), and the elements above the
superdiagonal are the last n - i - 1 elements of Householder vector u_(j_i). If m < n, the elements
below the subdiagonal are the last m - i - 1 elements of Householder vector v_(j_i), and the elements
above the diagonal are the last n - i elements of Householder vector u_(j_i).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of B_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= min(m,n).

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of B_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [out] tauq: pointer to type. Array on the GPU (the size depends on the value of strideQ). Contains
the vectors tauq_j of Householder scalars associated with matrices Q_j.

• [in] strideQ: rocblas_stride. Stride from the start of one vector tauq_j to the next one tauq_(j+1).
There is no restriction for the value of strideQ. Normal use is strideQ >= min(m,n).

• [out] taup: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors taup_j of Householder scalars associated with matrices P_j.

• [in] strideP: rocblas_stride. Stride from the start of one vector taup_j to the next one taup_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= min(m,n).

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytd2()

rocblas_status rocsolver_dsytd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, double *D, double *E, double
*tau)

rocblas_status rocsolver_ssytd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, float *D, float *E, float *tau)

SYTD2 computes the tridiagonal form of a real symmetric matrix A.

(This is the unblocked version of the algorithm).

The tridiagonal form is given by:

𝑇 = 𝑄′𝐴𝑄

where T is symmetric tridiagonal and Q is an orthogonal matrix represented as the product of Householder
matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1 if uplo indicates lower, or
𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1 if uplo indicates upper.

150 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − tau[𝑖] · 𝑣𝑖𝑣′𝑖

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖+1] = 1. If uplo indicates upper, the last n-i elements of the Householder
vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be fac-
tored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal
form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors
v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridi-
agonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder
vectors v_i stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] D: pointer to type. Array on the GPU of dimension n. The diagonal elements of T.

• [out] E: pointer to type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

• [out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>sytd2_batched()

rocblas_status rocsolver_dsytd2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, double
*E, const rocblas_stride strideE, double *tau, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_ssytd2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
float *D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, float *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

SYTD2_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is symmetric tridiagonal and 𝑄𝑗 is an orthogonal matrix represented as the product of Householder
matrices

3.3. LAPACK Functions 151



rocSOLVER Documentation, Release 3.18.0

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1
if uplo indicates lower, or

𝑄𝑗 = 𝐻𝑗𝑛−1
𝐻𝑗𝑛−2

· · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal
and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the
first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on
the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal
contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal
elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-
diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

152 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sytd2_strided_batched()

rocblas_status rocsolver_dsytd2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
double *tau, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_ssytd2_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *D, const rocblas_stride strideD,
float *E, const rocblas_stride strideE, float
*tau, const rocblas_stride strideP, const
rocblas_int batch_count)

SYTD2_STRIDED_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is symmetric tridiagonal and 𝑄𝑗 is an orthogonal matrix represented as the product of Householder
matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1
if uplo indicates lower, or

𝑄𝑗 = 𝐻𝑗𝑛−1𝐻𝑗𝑛−2 · · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal
contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements
of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal
and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last
n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

3.3. LAPACK Functions 153



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal
elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-
diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetd2()

rocblas_status rocsolver_zhetd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, double *D, dou-
ble *E, rocblas_double_complex *tau)

rocblas_status rocsolver_chetd2(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, float *D, float *E,
rocblas_float_complex *tau)

HETD2 computes the tridiagonal form of a complex hermitian matrix A.

(This is the unblocked version of the algorithm).

The tridiagonal form is given by:

𝑇 = 𝑄′𝐴𝑄

where T is hermitian tridiagonal and Q is an unitary matrix represented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1 if uplo indicates lower, or
𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1 if uplo indicates upper.

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − tau[𝑖] · 𝑣𝑖𝑣′𝑖

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖+1] = 1. If uplo indicates upper, the last n-i elements of the Householder
vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

154 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be fac-
tored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal
form T; the elements above the superdiagonal contain the first i-1 elements of the Householders vector
v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridi-
agonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder
vectors v_i stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] D: pointer to real type. Array on the GPU of dimension n. The diagonal elements of T.

• [out] E: pointer to real type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

• [out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>hetd2_batched()

rocblas_status rocsolver_zhetd2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride strideE,
rocblas_double_complex *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

rocblas_status rocsolver_chetd2_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride strideE,
rocblas_float_complex *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

HETD2_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is Hermitian tridiagonal and 𝑄𝑗 is a unitary matrix represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1 if uplo indicates lower, or
𝑄𝑗 = 𝐻𝑗𝑛−1

𝐻𝑗𝑛−2
· · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

3.3. LAPACK Functions 155



rocSOLVER Documentation, Release 3.18.0

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal
and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the
first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on
the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal
contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetd2_strided_batched()

rocblas_status rocsolver_zhetd2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
rocblas_double_complex *tau, const
rocblas_stride strideP, const rocblas_int
batch_count)

156 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_chetd2_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride
strideE, rocblas_float_complex *tau, const
rocblas_stride strideP, const rocblas_int
batch_count)

HETD2_STRIDED_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the unblocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is Hermitian tridiagonal and 𝑄𝑗 is a unitary matrix represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1 if uplo indicates lower, or
𝑄𝑗 = 𝐻𝑗𝑛−1

𝐻𝑗𝑛−2
· · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal
contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements
of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal
and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last
n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of T_j.

3.3. LAPACK Functions 157



rocSOLVER Documentation, Release 3.18.0

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrd()

rocblas_status rocsolver_dsytrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, double *D, double *E, double
*tau)

rocblas_status rocsolver_ssytrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, float *D, float *E, float *tau)

SYTRD computes the tridiagonal form of a real symmetric matrix A.

(This is the blocked version of the algorithm).

The tridiagonal form is given by:

𝑇 = 𝑄′𝐴𝑄

where T is symmetric tridiagonal and Q is an orthogonal matrix represented as the product of Householder
matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1 if uplo indicates lower, or
𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1 if uplo indicates upper.

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − tau[𝑖] · 𝑣𝑖𝑣′𝑖

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖+1] = 1. If uplo indicates upper, the last n-i elements of the Householder
vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

158 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be fac-
tored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal
form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors
v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridi-
agonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder
vectors v_i stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] D: pointer to type. Array on the GPU of dimension n. The diagonal elements of T.

• [out] E: pointer to type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

• [out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

rocsolver_<type>sytrd_batched()

rocblas_status rocsolver_dsytrd_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, double
*E, const rocblas_stride strideE, double *tau, const
rocblas_stride strideP, const rocblas_int batch_count)

rocblas_status rocsolver_ssytrd_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
float *D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, float *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

SYTRD_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is symmetric tridiagonal and 𝑄𝑗 is an orthogonal matrix represented as the product of Householder
matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1
if uplo indicates lower, or

𝑄𝑗 = 𝐻𝑗𝑛−1
𝐻𝑗𝑛−2

· · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

3.3. LAPACK Functions 159



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal
and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the
first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on
the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal
contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal
elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-
diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sytrd_strided_batched()

rocblas_status rocsolver_dsytrd_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
double *tau, const rocblas_stride strideP,
const rocblas_int batch_count)

rocblas_status rocsolver_ssytrd_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *D, const rocblas_stride strideD,
float *E, const rocblas_stride strideE, float
*tau, const rocblas_stride strideP, const
rocblas_int batch_count)

SYTRD_STRIDED_BATCHED computes the tridiagonal form of a batch of real symmetric matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

160 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is symmetric tridiagonal and 𝑄𝑗 is an orthogonal matrix represented as the product of Householder
matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1
if uplo indicates lower, or

𝑄𝑗 = 𝐻𝑗𝑛−1
𝐻𝑗𝑛−2

· · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal
contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements
of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal
and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last
n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The diagonal
elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). The off-
diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 161



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>hetrd()

rocblas_status rocsolver_zhetrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda, double *D, dou-
ble *E, rocblas_double_complex *tau)

rocblas_status rocsolver_chetrd(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, float *D, float *E,
rocblas_float_complex *tau)

HETRD computes the tridiagonal form of a complex hermitian matrix A.

(This is the blocked version of the algorithm).

The tridiagonal form is given by:

𝑇 = 𝑄′𝐴𝑄

where T is hermitian tridiagonal and Q is an unitary matrix represented as the product of Householder matrices

𝑄 = 𝐻1𝐻2 · · ·𝐻𝑛−1 if uplo indicates lower, or
𝑄 = 𝐻𝑛−1𝐻𝑛−2 · · ·𝐻1 if uplo indicates upper.

Each Householder matrix 𝐻𝑖 is given by

𝐻𝑖 = 𝐼 − tau[𝑖] · 𝑣𝑖𝑣′𝑖

where tau[i] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖+1] = 1. If uplo indicates upper, the last n-i elements of the Householder
vector 𝑣𝑖 are zero, and 𝑣𝑖[𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix to be fac-
tored. On exit, if upper, then the elements on the diagonal and superdiagonal contain the tridiagonal
form T; the elements above the superdiagonal contain the first i-1 elements of the Householder vectors
v_i stored as columns. If lower, then the elements on the diagonal and subdiagonal contain the tridi-
agonal form T; the elements below the subdiagonal contain the last n-i-1 elements of the Householder
vectors v_i stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] D: pointer to real type. Array on the GPU of dimension n. The diagonal elements of T.

• [out] E: pointer to real type. Array on the GPU of dimension n-1. The off-diagonal elements of T.

• [out] tau: pointer to type. Array on the GPU of dimension n-1. The Householder scalars.

162 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>hetrd_batched()

rocblas_status rocsolver_zhetrd_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride strideE,
rocblas_double_complex *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

rocblas_status rocsolver_chetrd_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride strideE,
rocblas_float_complex *tau, const rocblas_stride
strideP, const rocblas_int batch_count)

HETRD_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is Hermitian tridiagonal and 𝑄𝑗 is a unitary matrix represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1 if uplo indicates lower, or
𝑄𝑗 = 𝐻𝑗𝑛−1𝐻𝑗𝑛−2 · · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal
and superdiagonal contain the tridiagonal form T_j; the elements above the superdiagonal contain the
first i-1 elements of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on
the diagonal and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal
contain the last n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

3.3. LAPACK Functions 163



rocSOLVER Documentation, Release 3.18.0

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hetrd_strided_batched()

rocblas_status rocsolver_zhetrd_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
double *D, const rocblas_stride strideD,
double *E, const rocblas_stride strideE,
rocblas_double_complex *tau, const
rocblas_stride strideP, const rocblas_int
batch_count)

rocblas_status rocsolver_chetrd_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride
strideE, rocblas_float_complex *tau, const
rocblas_stride strideP, const rocblas_int
batch_count)

HETRD_STRIDED_BATCHED computes the tridiagonal form of a batch of complex hermitian matrices A_j.

(This is the blocked version of the algorithm).

The tridiagonal form of 𝐴𝑗 is given by:

𝑇𝑗 = 𝑄′
𝑗𝐴𝑗𝑄𝑗

where 𝑇𝑗 is Hermitian tridiagonal and 𝑄𝑗 is a unitary matrix represented as the product of Householder matrices

𝑄𝑗 = 𝐻𝑗1𝐻𝑗2 · · ·𝐻𝑗𝑛−1 if uplo indicates lower, or
𝑄𝑗 = 𝐻𝑗𝑛−1𝐻𝑗𝑛−2 · · ·𝐻𝑗1 if uplo indicates upper.

Each Householder matrix 𝐻𝑗𝑖 is given by

164 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐻𝑗𝑖 = 𝐼 − tau𝑗 [𝑖] · 𝑣𝑗𝑖𝑣′𝑗𝑖

where tau𝑗 [𝑖] is the corresponding Householder scalar. When uplo indicates lower, the first i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖 + 1] = 1. If uplo indicates upper, the last n-i elements of the
Householder vector 𝑣𝑗𝑖 are zero, and 𝑣𝑗𝑖 [𝑖] = 1.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the hermitian matrix A_j is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j to be factored. On exit, if upper, then the elements on the diagonal and superdiagonal
contain the tridiagonal form T_j; the elements above the superdiagonal contain the first i-1 elements
of the Householder vectors v_(j_i) stored as columns. If lower, then the elements on the diagonal
and subdiagonal contain the tridiagonal form T_j; the elements below the subdiagonal contain the last
n-i-1 elements of the Householder vectors v_(j_i) stored as columns.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
diagonal elements of T_j.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). The
off-diagonal elements of T_j.

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n-1.

• [out] tau: pointer to type. Array on the GPU (the size depends on the value of strideP). Contains
the vectors tau_j of corresponding Householder scalars.

• [in] strideP: rocblas_stride. Stride from the start of one vector tau_j to the next one tau_(j+1).
There is no restriction for the value of strideP. Normal use is strideP >= n-1.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygs2()

rocblas_status rocsolver_dsygs2(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int
lda, double *B, const rocblas_int ldb)

rocblas_status rocsolver_ssygs2(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int
lda, float *B, const rocblas_int ldb)

SYGS2 reduces a real symmetric-definite generalized eigenproblem to standard form.

3.3. LAPACK Functions 165



rocSOLVER Documentation, Release 3.18.0

(This is the unblocked version of the algorithm).

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

𝑈−𝑇𝐴𝑈−1, or
𝐿−1𝐴𝐿−𝑇 ,

where the symmetric-definite matrix B has been factorized as either 𝑈𝑇𝑈 or 𝐿𝐿𝑇 as returned by POTRF,
depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝐴𝑈𝑇 , or
𝐿𝑇𝐴𝐿,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and
whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper),
then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix
B, as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

166 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sygs2_batched()

rocblas_status rocsolver_dsygs2_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n, double
*const A[], const rocblas_int lda, double *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_ssygs2_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n, float
*const A[], const rocblas_int lda, float *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

SYGS2_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝑇
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝑇
𝑖 ,

where the symmetric-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝑇
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝑇
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝑇
𝑖 , or

𝐿𝑇
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent
standard eigenvalue problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

3.3. LAPACK Functions 167



rocSOLVER Documentation, Release 3.18.0

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
The triangular factors of the matrices B_i, as returned by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygs2_strided_batched()

rocblas_status rocsolver_dsygs2_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, double *A, const rocblas_int
lda, const rocblas_stride strideA, double *B,
const rocblas_int ldb, const rocblas_stride
strideB, const rocblas_int batch_count)

rocblas_status rocsolver_ssygs2_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, float *A, const rocblas_int
lda, const rocblas_stride strideA, float *B,
const rocblas_int ldb, const rocblas_stride
strideB, const rocblas_int batch_count)

SYGS2_STRIDED_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to stan-
dard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝑇
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝑇
𝑖 ,

where the symmetric-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝑇
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝑇
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝑇
𝑖 , or

𝐿𝑇
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

168 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue
problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The trian-
gular factors of the matrices B_i, as returned by POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegs2()

rocblas_status rocsolver_zhegs2(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, rocblas_double_complex *B, const
rocblas_int ldb)

rocblas_status rocsolver_chegs2(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, rocblas_float_complex *B, const
rocblas_int ldb)

HEGS2 reduces a hermitian-definite generalized eigenproblem to standard form.

(This is the unblocked version of the algorithm).

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

𝑈−𝐻𝐴𝑈−1, or
𝐿−1𝐴𝐿−𝐻 ,

where the hermitian-definite matrix B has been factorized as either 𝑈𝐻𝑈 or 𝐿𝐿𝐻 as returned by POTRF,
depending on the value of uplo.

3.3. LAPACK Functions 169



rocSOLVER Documentation, Release 3.18.0

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝐴𝑈𝐻 , or
𝐿𝐻𝐴𝐿,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and
whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper),
then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix
B, as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>hegs2_batched()

rocblas_status rocsolver_zhegs2_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_double_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_chegs2_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int
lda, rocblas_float_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

HEGS2_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

170 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝑈−𝐻
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝐻
𝑖 ,

where the hermitian-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝐻
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝐻
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝐻
𝑖 , or

𝐿𝐻
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent
standard eigenvalue problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
The triangular factors of the matrices B_i, as returned by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegs2_strided_batched()

rocblas_status rocsolver_zhegs2_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_chegs2_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_float_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

3.3. LAPACK Functions 171



rocSOLVER Documentation, Release 3.18.0

HEGS2_STRIDED_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard
form.

(This is the unblocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝐻
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝐻
𝑖 ,

where the hermitian-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝐻
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝐻
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝐻
𝑖 , or

𝐿𝐻
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue
problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The trian-
gular factors of the matrices B_i, as returned by POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

172 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sygst()

rocblas_status rocsolver_dsygst(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int
lda, double *B, const rocblas_int ldb)

rocblas_status rocsolver_ssygst(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int
lda, float *B, const rocblas_int ldb)

SYGST reduces a real symmetric-definite generalized eigenproblem to standard form.

(This is the blocked version of the algorithm).

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

𝑈−𝑇𝐴𝑈−1, or
𝐿−1𝐴𝐿−𝑇 ,

where the symmetric-definite matrix B has been factorized as either 𝑈𝑇𝑈 or 𝐿𝐿𝑇 as returned by POTRF,
depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝐴𝑈𝑇 , or
𝐿𝑇𝐴𝐿,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and
whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper),
then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix
B, as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

3.3. LAPACK Functions 173



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sygst_batched()

rocblas_status rocsolver_dsygst_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n, double
*const A[], const rocblas_int lda, double *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_ssygst_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n, float
*const A[], const rocblas_int lda, float *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

SYGST_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝑇
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝑇
𝑖 ,

where the symmetric-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝑇
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝑇
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝑇
𝑖 , or

𝐿𝑇
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent
standard eigenvalue problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

174 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
The triangular factors of the matrices B_i, as returned by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygst_strided_batched()

rocblas_status rocsolver_dsygst_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, double *A, const rocblas_int
lda, const rocblas_stride strideA, double *B,
const rocblas_int ldb, const rocblas_stride
strideB, const rocblas_int batch_count)

rocblas_status rocsolver_ssygst_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, float *A, const rocblas_int
lda, const rocblas_stride strideA, float *B,
const rocblas_int ldb, const rocblas_stride
strideB, const rocblas_int batch_count)

SYGST_STRIDED_BATCHED reduces a batch of real symmetric-definite generalized eigenproblems to stan-
dard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝑇
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝑇
𝑖 ,

where the symmetric-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝑇
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝑇
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝑇
𝑖 , or

𝐿𝑇
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

3.3. LAPACK Functions 175



rocSOLVER Documentation, Release 3.18.0

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue
problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The trian-
gular factors of the matrices B_i, as returned by POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegst()

rocblas_status rocsolver_zhegst(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, rocblas_double_complex *B, const
rocblas_int ldb)

rocblas_status rocsolver_chegst(rocblas_handle handle, const rocblas_eform itype, const
rocblas_fill uplo, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, rocblas_float_complex *B, const
rocblas_int ldb)

HEGST reduces a hermitian-definite generalized eigenproblem to standard form.

(This is the blocked version of the algorithm).

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then A is overwritten with

𝑈−𝐻𝐴𝑈−1, or
𝐿−1𝐴𝐿−𝐻 ,

where the hermitian-definite matrix B has been factorized as either 𝑈𝐻𝑈 or 𝐿𝐿𝐻 as returned by POTRF,
depending on the value of uplo.

176 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝐴𝑈𝐻 , or
𝐿𝐻𝐴𝐿,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored, and
whether the factorization applied to B was upper or lower triangular. If uplo indicates lower (or upper),
then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, the transformed matrix associated with the equivalent standard eigenvalue problem.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. The triangular factor of the matrix
B, as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

rocsolver_<type>hegst_batched()

rocblas_status rocsolver_zhegst_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_double_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_chegst_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int
lda, rocblas_float_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

HEGST_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

3.3. LAPACK Functions 177



rocSOLVER Documentation, Release 3.18.0

𝑈−𝐻
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝐻
𝑖 ,

where the hermitian-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝐻
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝐻
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝐻
𝑖 , or

𝐿𝐻
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i. On exit, the transformed matrices associated with the equivalent
standard eigenvalue problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
The triangular factors of the matrices B_i, as returned by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegst_strided_batched()

rocblas_status rocsolver_zhegst_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_chegst_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_float_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

178 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

HEGST_STRIDED_BATCHED reduces a batch of hermitian-definite generalized eigenproblems to standard
form.

(This is the blocked version of the algorithm).

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype.

If the problem is of the 1st form, then 𝐴𝑖 is overwritten with

𝑈−𝐻
𝑖 𝐴𝑖𝑈

−1
𝑖 , or

𝐿−1
𝑖 𝐴𝑖𝐿

−𝐻
𝑖 ,

where the hermitian-definite matrix 𝐵𝑖 has been factorized as either 𝑈𝐻
𝑖 𝑈𝑖 or 𝐿𝑖𝐿

𝐻
𝑖 as returned by POTRF,

depending on the value of uplo.

If the problem is of the 2nd or 3rd form, then A is overwritten with

𝑈𝑖𝐴𝑖𝑈
𝐻
𝑖 , or

𝐿𝐻
𝑖 𝐴𝑖𝐿𝑖,

also depending on the value of uplo.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_i are stored,
and whether the factorization applied to B_i was upper or lower triangular. If uplo indicates lower (or
upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_i. On exit, the transformed matrices associated with the equivalent standard eigenvalue
problems.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). The trian-
gular factors of the matrices B_i, as returned by POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*n.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 179



rocSOLVER Documentation, Release 3.18.0

3.3.4 Linear-systems solvers

List of linear solvers

• rocsolver_<type>trtri()

• rocsolver_<type>trtri_batched()

• rocsolver_<type>trtri_strided_batched()

• rocsolver_<type>getri()

• rocsolver_<type>getri_batched()

• rocsolver_<type>getri_strided_batched()

• rocsolver_<type>getrs()

• rocsolver_<type>getrs_batched()

• rocsolver_<type>getrs_strided_batched()

• rocsolver_<type>gesv()

• rocsolver_<type>gesv_batched()

• rocsolver_<type>gesv_strided_batched()

• rocsolver_<type>potri()

• rocsolver_<type>potri_batched()

• rocsolver_<type>potri_strided_batched()

• rocsolver_<type>potrs()

• rocsolver_<type>potrs_batched()

• rocsolver_<type>potrs_strided_batched()

• rocsolver_<type>posv()

• rocsolver_<type>posv_batched()

• rocsolver_<type>posv_strided_batched()

rocsolver_<type>trtri()

rocblas_status rocsolver_ztrtri(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_ctrtri(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_dtrtri(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, double *A, const
rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_strtri(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, float *A, const
rocblas_int lda, rocblas_int *info)

180 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

TRTRI inverts a triangular n-by-n matrix A.

A can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending
on the value of diag.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrix A is stored. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of A are not refer-
enced and assumed to be one.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the triangular matrix.
On exit, the inverse of A if info = 0.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, A is
singular. A[i,i] is the first zero element in the diagonal.

rocsolver_<type>trtri_batched()

rocblas_status rocsolver_ztrtri_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_diagonal diag, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_ctrtri_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_diagonal diag, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int
lda, rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_dtrtri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, double
*const A[], const rocblas_int lda, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_strtri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_diagonal diag, const rocblas_int n, float *const
A[], const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

TRTRI_BATCHED inverts a batch of triangular n-by-n matrices 𝐴𝑗 .

𝐴𝑗 can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending
on the value of diag.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_j are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of matrices A_j
are not referenced and assumed to be one.

3.3. LAPACK Functions 181



rocSOLVER Documentation, Release 3.18.0

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the triangular matrices A_j. On exit, the inverses of A_j if info[j] = 0.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, A_j is singular. A_j[i,i] is the first zero element
in the diagonal.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>trtri_strided_batched()

rocblas_status rocsolver_ztrtri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_diagonal diag, const
rocblas_int n, rocblas_double_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_ctrtri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_diagonal diag, const
rocblas_int n, rocblas_float_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dtrtri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_diagonal diag, const
rocblas_int n, double *A, const rocblas_int
lda, const rocblas_stride strideA, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_strtri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_diagonal diag, const
rocblas_int n, float *A, const rocblas_int
lda, const rocblas_stride strideA, rocblas_int
*info, const rocblas_int batch_count)

TRTRI_STRIDED_BATCHED inverts a batch of triangular n-by-n matrices 𝐴𝑗 .

𝐴𝑗 can be upper or lower triangular, depending on the value of uplo, and unit or non-unit triangular, depending
on the value of diag.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the matrices A_j are stored.
If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] diag: rocblas_diagonal. If diag indicates unit, then the diagonal elements of matrices A_j
are not referenced and assumed to be one.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the triangular matrices A_j. On exit, the inverses of A_j if info[j] = 0.

182 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, A_j is singular. A_j[i,i] is the first zero element
in the diagonal.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri()

rocblas_status rocsolver_zgetri(rocblas_handle handle, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_cgetri(rocblas_handle handle, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_dgetri(rocblas_handle handle, const rocblas_int n, double *A, const
rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

rocblas_status rocsolver_sgetri(rocblas_handle handle, const rocblas_int n, float *A, const
rocblas_int lda, rocblas_int *ipiv, rocblas_int *info)

GETRI inverts a general n-by-n matrix A using the LU factorization computed by GETRF.

The inverse is computed by solving the linear system

𝐴−1𝐿 = 𝑈−1

where L is the lower triangular factor of A with unit diagonal elements, and U is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factors L and U
of the factorization A = P*L*U returned by GETRF. On exit, the inverse of A if info = 0; otherwise
undefined.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned
by GETRF.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is
singular. U[i,i] is the first zero pivot.

3.3. LAPACK Functions 183



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getri_batched()

rocblas_status rocsolver_zgetri_batched(rocblas_handle handle, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_cgetri_batched(rocblas_handle handle, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetri_batched(rocblas_handle handle, const rocblas_int n, double
*const A[], const rocblas_int lda, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgetri_batched(rocblas_handle handle, const rocblas_int n, float
*const A[], const rocblas_int lda, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int *info, const
rocblas_int batch_count)

GETRI_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by
GETRF_BATCHED.

The inverse of matrix 𝐴𝑗 in the batch is computed by solving the linear system

𝐴−1
𝑗 𝐿𝑗 = 𝑈−1

𝑗

where 𝐿𝑗 is the lower triangular factor of 𝐴𝑗 with unit diagonal elements, and 𝑈𝑗 is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimen-
sion lda*n. On entry, the factors L_j and U_j of the factorization A = P_j*L_j*U_j returned by
GETRF_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The pivot indices returned by GETRF_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(i+j).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

184 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getri_strided_batched()

rocblas_status rocsolver_zgetri_strided_batched(rocblas_handle handle, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetri_strided_batched(rocblas_handle handle, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dgetri_strided_batched(rocblas_handle handle, const rocblas_int n,
double *A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_sgetri_strided_batched(rocblas_handle handle, const rocblas_int
n, float *A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_int *ipiv,
const rocblas_stride strideP, rocblas_int
*info, const rocblas_int batch_count)

GETRI_STRIDED_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed
by GETRF_STRIDED_BATCHED.

The inverse of matrix 𝐴𝑗 in the batch is computed by solving the linear system

𝐴−1
𝑗 𝐿𝑗 = 𝑈−1

𝑗

where 𝐿𝑗 is the lower triangular factor of 𝐴𝑗 with unit diagonal elements, and 𝑈𝑗 is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA).
On entry, the factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by
GETRF_STRIDED_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The pivot indices returned by GETRF_STRIDED_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

3.3. LAPACK Functions 185



rocSOLVER Documentation, Release 3.18.0

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrs()

rocblas_status rocsolver_zgetrs(rocblas_handle handle, const rocblas_operation trans, const
rocblas_int n, const rocblas_int nrhs, rocblas_double_complex
*A, const rocblas_int lda, const rocblas_int *ipiv,
rocblas_double_complex *B, const rocblas_int ldb)

rocblas_status rocsolver_cgetrs(rocblas_handle handle, const rocblas_operation trans, const
rocblas_int n, const rocblas_int nrhs, rocblas_float_complex
*A, const rocblas_int lda, const rocblas_int *ipiv,
rocblas_float_complex *B, const rocblas_int ldb)

rocblas_status rocsolver_dgetrs(rocblas_handle handle, const rocblas_operation trans, const
rocblas_int n, const rocblas_int nrhs, double *A, const rocblas_int
lda, const rocblas_int *ipiv, double *B, const rocblas_int ldb)

rocblas_status rocsolver_sgetrs(rocblas_handle handle, const rocblas_operation trans, const
rocblas_int n, const rocblas_int nrhs, float *A, const rocblas_int
lda, const rocblas_int *ipiv, float *B, const rocblas_int ldb)

GETRS solves a system of n linear equations on n variables in its factorized form.

It solves one of the following systems, depending on the value of trans:

𝐴𝑋 = 𝐵 not transposed,
𝐴𝑇𝑋 = 𝐵 transposed, or
𝐴𝐻𝑋 = 𝐵 conjugate transposed.

Matrix A is defined by its triangular factors as returned by GETRF.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
the matrix B.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factor-
ization A = P*L*U returned by GETRF.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned
by GETRF.

• [inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side
matrix B. On exit, the solution matrix X.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

186 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getrs_batched()

rocblas_status rocsolver_zgetrs_batched(rocblas_handle handle, const rocblas_operation
trans, const rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *const A[], const rocblas_int
lda, const rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_double_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_cgetrs_batched(rocblas_handle handle, const rocblas_operation
trans, const rocblas_int n, const rocblas_int nrhs,
rocblas_float_complex *const A[], const rocblas_int
lda, const rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_float_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_dgetrs_batched(rocblas_handle handle, const rocblas_operation trans,
const rocblas_int n, const rocblas_int nrhs, double
*const A[], const rocblas_int lda, const rocblas_int
*ipiv, const rocblas_stride strideP, double *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_sgetrs_batched(rocblas_handle handle, const rocblas_operation trans,
const rocblas_int n, const rocblas_int nrhs, float
*const A[], const rocblas_int lda, const rocblas_int
*ipiv, const rocblas_stride strideP, float *const B[],
const rocblas_int ldb, const rocblas_int batch_count)

GETRS_BATCHED solves a batch of systems of n linear equations on n variables in its factorized forms.

For each instance j in the batch, it solves one of the following systems, depending on the value of trans:

𝐴𝑗𝑋𝑗 = 𝐵𝑗 not transposed,
𝐴𝑇

𝑗 𝑋𝑗 = 𝐵𝑗 transposed, or
𝐴𝐻

𝑗 𝑋𝑗 = 𝐵𝑗 conjugate transposed.

Matrix 𝐴𝑗 is defined by its triangular factors as returned by GETRF_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations of each instance in
the batch.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by GETRF_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors ipiv_j of pivot indices returned by GETRF_BATCHED.

3.3. LAPACK Functions 187



rocSOLVER Documentation, Release 3.18.0

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension
ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system
in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>getrs_strided_batched()

rocblas_status rocsolver_zgetrs_strided_batched(rocblas_handle handle, const
rocblas_operation trans, const
rocblas_int n, const rocblas_int
nrhs, rocblas_double_complex *A,
const rocblas_int lda, const
rocblas_stride strideA, const rocblas_int
*ipiv, const rocblas_stride strideP,
rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_cgetrs_strided_batched(rocblas_handle handle, const
rocblas_operation trans, const
rocblas_int n, const rocblas_int nrhs,
rocblas_float_complex *A, const rocblas_int
lda, const rocblas_stride strideA, const
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_float_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_dgetrs_strided_batched(rocblas_handle handle, const
rocblas_operation trans, const rocblas_int
n, const rocblas_int nrhs, double *A,
const rocblas_int lda, const rocblas_stride
strideA, const rocblas_int *ipiv, const
rocblas_stride strideP, double *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_sgetrs_strided_batched(rocblas_handle handle, const
rocblas_operation trans, const rocblas_int
n, const rocblas_int nrhs, float *A, const
rocblas_int lda, const rocblas_stride
strideA, const rocblas_int *ipiv, const
rocblas_stride strideP, float *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

GETRS_STRIDED_BATCHED solves a batch of systems of n linear equations on n variables in its factorized
forms.

For each instance j in the batch, it solves one of the following systems, depending on the value of trans:

188 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐴𝑗𝑋𝑗 = 𝐵𝑗 not transposed,
𝐴𝑇

𝑗 𝑋𝑗 = 𝐵𝑗 transposed, or
𝐴𝐻

𝑗 𝑋𝑗 = 𝐵𝑗 conjugate transposed.

Matrix 𝐴𝑗 is defined by its triangular factors as returned by GETRF_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations of each instance in
the batch.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors
L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by GETRF_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
Contains the vectors ipiv_j of pivot indices returned by GETRF_STRIDED_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the
right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>gesv()

rocblas_status rocsolver_zgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_double_complex *B, const rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_cgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *ipiv,
rocblas_float_complex *B, const rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_dgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs,
double *A, const rocblas_int lda, rocblas_int *ipiv, double *B, const
rocblas_int ldb, rocblas_int *info)

3.3. LAPACK Functions 189



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgesv(rocblas_handle handle, const rocblas_int n, const rocblas_int nrhs,
float *A, const rocblas_int lda, rocblas_int *ipiv, float *B, const
rocblas_int ldb, rocblas_int *info)

GESV solves a general system of n linear equations on n variables.

The linear system is of the form

𝐴𝑋 = 𝐵

where A is a general n-by-n matrix. Matrix A is first factorized in triangular factors L and U using GETRF;
then, the solution is computed with GETRS.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
the matrix B.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit, if
info = 0, the factors L and U of the LU decomposition of A returned by GETRF.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [out] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned
by GETRF.

• [inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side
matrix B. On exit, the solution matrix X.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is
singular, and the solution could not be computed. U[i,i] is the first zero element in the diagonal.

rocsolver_<type>gesv_batched()

rocblas_status rocsolver_zgesv_batched(rocblas_handle handle, const rocblas_int n, const
rocblas_int nrhs, rocblas_double_complex *const
A[], const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_double_complex *const
B[], const rocblas_int ldb, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgesv_batched(rocblas_handle handle, const rocblas_int n, const
rocblas_int nrhs, rocblas_float_complex *const A[],
const rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_float_complex *const
B[], const rocblas_int ldb, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgesv_batched(rocblas_handle handle, const rocblas_int n, const
rocblas_int nrhs, double *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP, dou-
ble *const B[], const rocblas_int ldb, rocblas_int *info,
const rocblas_int batch_count)

190 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgesv_batched(rocblas_handle handle, const rocblas_int n, const
rocblas_int nrhs, float *const A[], const rocblas_int
lda, rocblas_int *ipiv, const rocblas_stride strideP, float
*const B[], const rocblas_int ldb, rocblas_int *info,
const rocblas_int batch_count)

GESV_BATCHED solves a batch of general systems of n linear equations on n variables.

The linear systems are of the form

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a general n-by-n matrix. Matrix 𝐴𝑗 is first factorized in triangular factors 𝐿𝑗 and 𝑈𝑗 using
GETRF_BATCHED; then, the solutions are computed with GETRS_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
On entry, the matrices A_j. On exit, if info_j = 0, the factors L_j and U_j of the LU decomposition of
A_j returned by GETRF_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The vectors ipiv_j of pivot indices returned by GETRF_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension
ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system
in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for A_j. If info[i] = j > 0, U_i is singular, and the solution could not be computed.
U_j[i,i] is the first zero element in the diagonal.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

3.3. LAPACK Functions 191



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>gesv_strided_batched()

rocblas_status rocsolver_zgesv_strided_batched(rocblas_handle handle, const
rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride
strideB, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgesv_strided_batched(rocblas_handle handle, const rocblas_int n,
const rocblas_int nrhs, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_int *ipiv, const
rocblas_stride strideP, rocblas_float_complex
*B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_dgesv_strided_batched(rocblas_handle handle, const rocblas_int n,
const rocblas_int nrhs, double *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride strideP,
double *B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgesv_strided_batched(rocblas_handle handle, const rocblas_int n,
const rocblas_int nrhs, float *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_int *ipiv, const rocblas_stride strideP,
float *B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info, const
rocblas_int batch_count)

GESV_STRIDED_BATCHED solves a batch of general systems of n linear equations on n variables.

The linear systems are of the form

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a general n-by-n matrix. Matrix 𝐴𝑗 is first factorized in triangular factors 𝐿𝑗 and 𝑈𝑗 using
GETRF_STRIDED_BATCHED; then, the solutions are computed with GETRS_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

192 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry, the
matrices A_j. On exit, if info_j = 0, the factors L_j and U_j of the LU decomposition of A_j returned
by GETRF_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The vectors ipiv_j of pivot indices returned by GETRF_STRIDED_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the
right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for A_j. If info[i] = j > 0, U_i is singular, and the solution could not be computed.
U_j[i,i] is the first zero element in the diagonal.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>potri()

rocblas_status rocsolver_zpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_cpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_dpotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
double *A, const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_spotri(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, rocblas_int *info)

POTRI inverts a symmetric/hermitian positive definite matrix A.

The inverse of matrix 𝐴 is computed as

𝐴−1 = 𝑈−1𝑈−1′ if uplo is upper, or
𝐴−1 = 𝐿−1′𝐿−1 if uplo is lower.

where 𝑈 or 𝐿 is the triangular factor of the Cholesky factorization of 𝐴 returned by POTRF.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A.

3.3. LAPACK Functions 193



rocSOLVER Documentation, Release 3.18.0

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factor L or U of
the Cholesky factorization of A returned by POTRF. On exit, the inverses of A if info = 0.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit for inversion of A. If
info = j > 0, A is singular. L[j,j] or U[j,j] is zero.

rocsolver_<type>potri_batched()

rocblas_status rocsolver_zpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dpotri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_spotri_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

POTRI_BATCHED inverts a batch of symmetric/hermitian positive definite matrices 𝐴𝑖.

The inverse of matrix 𝐴𝑖 in the batch is computed as

𝐴−1
𝑖 = 𝑈−1

𝑖 𝑈−1
𝑖

′
if uplo is upper, or

𝐴−1
𝑖 = 𝐿−1

𝑖

′
𝐿−1
𝑖 if uplo is lower.

where 𝑈𝑖 or 𝐿𝑖 is the triangular factor of the Cholesky factorization of 𝐴𝑖 returned by POTRF_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimen-
sion lda*n. On entry, the factor L_i or U_i of the Cholesky factorization of A_i returned by
POTRF_BATCHED. On exit, the inverses of A_i if info[i] = 0.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for inversion of A_i. If info[i] = j > 0, A_i is singular. L_i[j,j] or U_i[j,j] is zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

194 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>potri_strided_batched()

rocblas_status rocsolver_zpotri_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cpotri_strided_batched(rocblas_handle handle, const
rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int
lda, const rocblas_stride strideA, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dpotri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, double *A,
const rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_spotri_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const rocblas_int
batch_count)

POTRI_STRIDED_BATCHED inverts a batch of symmetric/hermitian positive definite matrices 𝐴𝑖.

The inverse of matrix 𝐴𝑖 in the batch is computed as

𝐴−1
𝑖 = 𝑈−1

𝑖 𝑈−1
𝑖

′
if uplo is upper, or

𝐴−1
𝑖 = 𝐿−1

𝑖

′
𝐿−1
𝑖 if uplo is lower.

where 𝑈𝑖 or 𝐿𝑖 is the triangular factor of the Cholesky factorization of 𝐴𝑖 returned by
POTRF_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of matrix A_i.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the factor L_i or U_i of the Cholesky factorization of A_i returned by POTRF_STRIDED_BATCHED.
On exit, the inverses of A_i if info[i] = 0.

• [in] lda: rocblas_int. lda >= n. specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for inversion of A_i. If info[i] = j > 0, A_i is singular. L_i[j,j] or U_i[j,j] is zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 195



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>potrs()

rocblas_status rocsolver_zpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nrhs, rocblas_double_complex *A, const
rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb)

rocblas_status rocsolver_cpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nrhs, rocblas_float_complex *A, const
rocblas_int lda, rocblas_float_complex *B, const rocblas_int ldb)

rocblas_status rocsolver_dpotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nrhs, double *A, const rocblas_int lda, double
*B, const rocblas_int ldb)

rocblas_status rocsolver_spotrs(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nrhs, float *A, const rocblas_int lda, float *B,
const rocblas_int ldb)

POTRS solves a symmetric/hermitian system of n linear equations on n variables in its factorized form.

It solves the system

𝐴𝑋 = 𝐵

where A is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

𝐴 = 𝑈 ′𝑈 if uplo is upper, or
𝐴 = 𝐿𝐿′ if uplo is lower.

as returned by POTRF.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
the matrix B.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. The factor L or U of the Cholesky
factorization of A returned by POTRF.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side
matrix B. On exit, the solution matrix X.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

196 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>potrs_batched()

rocblas_status rocsolver_zpotrs_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_double_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_cpotrs_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_int n, const rocblas_int nrhs,
rocblas_float_complex *const A[], const rocblas_int
lda, rocblas_float_complex *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_dpotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, const rocblas_int nrhs, double *const
A[], const rocblas_int lda, double *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

rocblas_status rocsolver_spotrs_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, const rocblas_int nrhs, float *const
A[], const rocblas_int lda, float *const B[], const
rocblas_int ldb, const rocblas_int batch_count)

POTRS_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables in its
factorized forms.

For each instance j in the batch, it solves the system

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

𝐴𝑗 = 𝑈 ′
𝑗𝑈𝑗 if uplo is upper, or

𝐴𝑗 = 𝐿𝑗𝐿
′
𝑗 if uplo is lower.

as returned by POTRF_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
The factor L_j or U_j of the Cholesky factorization of A_j returned by POTRF_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

3.3. LAPACK Functions 197



rocSOLVER Documentation, Release 3.18.0

• [inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension
ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system
in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>potrs_strided_batched()

rocblas_status rocsolver_zpotrs_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

rocblas_status rocsolver_cpotrs_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_float_complex *B, const rocblas_int
ldb, const rocblas_stride strideB, const
rocblas_int batch_count)

rocblas_status rocsolver_dpotrs_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, double *A, const rocblas_int lda,
const rocblas_stride strideA, double *B,
const rocblas_int ldb, const rocblas_stride
strideB, const rocblas_int batch_count)

rocblas_status rocsolver_spotrs_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, float *A, const rocblas_int lda, const
rocblas_stride strideA, float *B, const
rocblas_int ldb, const rocblas_stride strideB,
const rocblas_int batch_count)

POTRS_STRIDED_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n vari-
ables in its factorized forms.

For each instance j in the batch, it solves the system

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a real symmetric (complex hermitian) positive definite matrix defined by its triangular factor

𝐴𝑗 = 𝑈 ′
𝑗𝑈𝑗 if uplo is upper, or

𝐴𝑗 = 𝐿𝑗𝐿
′
𝑗 if uplo is lower.

as returned by POTRF_STRIDED_BATCHED.

198 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factor
L_j or U_j of the Cholesky factorization of A_j returned by POTRF_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the
right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>posv()

rocblas_status rocsolver_zposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int
n, const rocblas_int nrhs, rocblas_double_complex *A, const
rocblas_int lda, rocblas_double_complex *B, const rocblas_int ldb,
rocblas_int *info)

rocblas_status rocsolver_cposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nrhs, rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *B, const rocblas_int ldb, rocblas_int
*info)

rocblas_status rocsolver_dposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nrhs, double *A, const rocblas_int lda, double *B,
const rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_sposv(rocblas_handle handle, const rocblas_fill uplo, const rocblas_int n,
const rocblas_int nrhs, float *A, const rocblas_int lda, float *B,
const rocblas_int ldb, rocblas_int *info)

POSV solves a symmetric/hermitian system of n linear equations on n variables.

It solves the system

𝐴𝑋 = 𝐵

where A is a real symmetric (complex hermitian) positive definite matrix. Matrix A is first factorized as 𝐴 = 𝐿𝐿′

or 𝐴 = 𝑈 ′𝑈 , depending on the value of uplo, using POTRF; then, the solution is computed with POTRS.

3.3. LAPACK Functions 199



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of A.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
the matrix B.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric/hermitian
matrix A. On exit, if info = 0, the factor L or U of the Cholesky factorization of A returned by POTRF.

• [in] lda: rocblas_int. lda >= n. The leading dimension of A.

• [inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the right hand side
matrix B. On exit, the solution matrix X.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of B.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, the
leading minor of order j of A is not positive definite. The solution could not be computed.

rocsolver_<type>posv_batched()

rocblas_status rocsolver_zposv_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *const A[], const rocblas_int
lda, rocblas_double_complex *const B[], const
rocblas_int ldb, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cposv_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_int n, const rocblas_int nrhs,
rocblas_float_complex *const A[], const rocblas_int lda,
rocblas_float_complex *const B[], const rocblas_int
ldb, rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_dposv_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, const rocblas_int nrhs, double *const
A[], const rocblas_int lda, double *const B[], const
rocblas_int ldb, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sposv_batched(rocblas_handle handle, const rocblas_fill uplo, const
rocblas_int n, const rocblas_int nrhs, float *const
A[], const rocblas_int lda, float *const B[], const
rocblas_int ldb, rocblas_int *info, const rocblas_int
batch_count)

POSV_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n variables.

For each instance j in the batch, it solves the system

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a real symmetric (complex hermitian) positive definite matrix. Matrix 𝐴𝑗 is first factorized as
𝐴𝑗 = 𝐿𝑗𝐿

′
𝑗 or 𝐴𝑗 = 𝑈 ′

𝑗𝑈𝑗 , depending on the value of uplo, using POTRF_BATCHED; then, the solution is
computed with POTRS_BATCHED.

200 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
On entry, the symmetric/hermitian matrices A_j. On exit, if info[j] = 0, the factor L_j or U_j of the
Cholesky factorization of A_j returned by POTRF_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [inout] B: Array of pointers to type. Each pointer points to an array on the GPU of dimension
ldb*nrhs. On entry, the right hand side matrices B_j. On exit, the solution matrix X_j of each system
in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit. If info[j] = i > 0, the leading minor of order i of A_j is not positive definite. The j-th
solution could not be computed.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

rocsolver_<type>posv_strided_batched()

rocblas_status rocsolver_zposv_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride
strideB, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cposv_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_float_complex *B, const rocblas_int
ldb, const rocblas_stride strideB, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dposv_strided_batched(rocblas_handle handle, const rocblas_fill uplo,
const rocblas_int n, const rocblas_int
nrhs, double *A, const rocblas_int lda,
const rocblas_stride strideA, double *B,
const rocblas_int ldb, const rocblas_stride
strideB, rocblas_int *info, const rocblas_int
batch_count)

3.3. LAPACK Functions 201



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sposv_strided_batched(rocblas_handle handle, const rocblas_fill
uplo, const rocblas_int n, const rocblas_int
nrhs, float *A, const rocblas_int lda,
const rocblas_stride strideA, float *B,
const rocblas_int ldb, const rocblas_stride
strideB, rocblas_int *info, const rocblas_int
batch_count)

POSV_STRIDED_BATCHED solves a batch of symmetric/hermitian systems of n linear equations on n vari-
ables.

For each instance j in the batch, it solves the system

𝐴𝑗𝑋𝑗 = 𝐵𝑗

where 𝐴𝑗 is a real symmetric (complex hermitian) positive definite matrix. Matrix 𝐴𝑗 is first factorized as
𝐴𝑗 = 𝐿𝑗𝐿

′
𝑗 or 𝐴𝑗 = 𝑈 ′

𝑗𝑈𝑗 , depending on the value of uplo, using POTRF_STRIDED_BATCHED; then, the
solution is computed with POTRS_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] uplo: rocblas_fill. Specifies whether the factorization is upper or lower triangular. If uplo
indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. The order of the system, i.e. the number of columns and rows of all
A_j matrices.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of right hand sides, i.e., the number of columns of
all the matrices B_j.

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the symmetric/hermitian matrices A_j. On exit, if info[j] = 0, the factor L_j or U_j of the Cholesky
factorization of A_j returned by POTRF_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. The leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [inout] B: pointer to type. Array on the GPU (size depends on the value of strideB). On entry, the
right hand side matrices B_j. On exit, the solution matrix X_j of each system in the batch.

• [in] ldb: rocblas_int. ldb >= n. The leading dimension of matrices B_j.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_j to the next one B_(j+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit. If info[j] = i > 0, the leading minor of order i of A_j is not positive definite. The j-th
solution could not be computed.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of instances (systems) in the batch.

202 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

3.3.5 Least-squares solvers

List of least-squares solvers

• rocsolver_<type>gels()

• rocsolver_<type>gels_batched()

• rocsolver_<type>gels_strided_batched()

rocsolver_<type>gels()

rocblas_status rocsolver_zgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m,
const rocblas_int n, const rocblas_int nrhs, rocblas_double_complex
*A, const rocblas_int lda, rocblas_double_complex *B, const
rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_cgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m,
const rocblas_int n, const rocblas_int nrhs, rocblas_float_complex
*A, const rocblas_int lda, rocblas_float_complex *B, const
rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_dgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int m,
const rocblas_int n, const rocblas_int nrhs, double *A, const
rocblas_int lda, double *B, const rocblas_int ldb, rocblas_int *info)

rocblas_status rocsolver_sgels(rocblas_handle handle, rocblas_operation trans, const rocblas_int
m, const rocblas_int n, const rocblas_int nrhs, float *A, const
rocblas_int lda, float *B, const rocblas_int ldb, rocblas_int *info)

GELS solves an overdetermined (or underdetermined) linear system defined by an m-by-n matrix A, and a
corresponding matrix B, using the QR factorization computed by GEQRF (or the LQ factorization computed by
GELQF).

Depending on the value of trans, the problem solved by this function is either of the form

𝐴𝑋 = 𝐵 not transposed, or
𝐴′𝑋 = 𝐵 transposed if real, or conjugate transposed if complex

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-
squares solution approximating X is found by minimizing

||𝐵 −𝐴𝑋|| (or ||𝐵 −𝐴′𝑋||)

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique
solution for X is chosen such that ||𝑋|| is minimal.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations.

• [in] m: rocblas_int. m >= 0. The number of rows of matrix A.

3.3. LAPACK Functions 203



rocSOLVER Documentation, Release 3.18.0

• [in] n: rocblas_int. n >= 0. The number of columns of matrix A.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of columns of matrices B and X; i.e., the columns
on the right hand side.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, the QR (or LQ) factorization of A as returned by GEQRF (or GELQF).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrix A.

• [inout] B: pointer to type. Array on the GPU of dimension ldb*nrhs. On entry, the matrix B. On
exit, when info = 0, B is overwritten by the solution vectors (and the residuals in the overdetermined
cases) stored as columns.

• [in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrix B.

• [out] info: pointer to rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, the
solution could not be computed because input matrix A is rank deficient; the j-th diagonal element of
its triangular factor is zero.

rocsolver_<type>gels_batched()

rocblas_status rocsolver_zgels_batched(rocblas_handle handle, rocblas_operation trans, const
rocblas_int m, const rocblas_int n, const rocblas_int
nrhs, rocblas_double_complex *const A[], const
rocblas_int lda, rocblas_double_complex *const
B[], const rocblas_int ldb, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgels_batched(rocblas_handle handle, rocblas_operation trans, const
rocblas_int m, const rocblas_int n, const rocblas_int
nrhs, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *const B[], const
rocblas_int ldb, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dgels_batched(rocblas_handle handle, rocblas_operation trans, const
rocblas_int m, const rocblas_int n, const rocblas_int
nrhs, double *const A[], const rocblas_int lda, dou-
ble *const B[], const rocblas_int ldb, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_sgels_batched(rocblas_handle handle, rocblas_operation trans, const
rocblas_int m, const rocblas_int n, const rocblas_int
nrhs, float *const A[], const rocblas_int lda, float
*const B[], const rocblas_int ldb, rocblas_int *info,
const rocblas_int batch_count)

GELS_BATCHED solves a batch of overdetermined (or underdetermined) linear systems defined by a set of m-
by-n matrices 𝐴𝑖, and corresponding matrices 𝐵𝑖, using the QR factorizations computed by GEQRF_BATCHED
(or the LQ factorizations computed by GELQF_BATCHED).

For each instance in the batch, depending on the value of trans, the problem solved by this function is either of
the form

𝐴𝑖𝑋𝑖 = 𝐵𝑖 not transposed, or
𝐴′

𝑖𝑋𝑖 = 𝐵𝑖 transposed if real, or conjugate transposed if complex

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-
squares solution approximating X_i is found by minimizing

204 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

||𝐵𝑖 −𝐴𝑖𝑋𝑖|| (or ||𝐵𝑖 −𝐴′
𝑖𝑋𝑖||)

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique
solution for X_i is chosen such that ||𝑋𝑖|| is minimal.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of columns of all matrices B_i and X_i in the
batch; i.e., the columns on the right hand side.

• [inout] A: array of pointer to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_i. On exit, the QR (or LQ) factorizations of A_i as returned by
GEQRF_BATCHED (or GELQF_BATCHED).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [inout] B: array of pointer to type. Each pointer points to an array on the GPU of dimension
ldb*nrhs. On entry, the matrices B_i. On exit, when info[i] = 0, B_i is overwritten by the solution
vectors (and the residuals in the overdetermined cases) stored as columns.

• [in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrices B_i.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for solution of A_i. If info[i] = j > 0, the solution of A_i could not be computed
because input matrix A_i is rank deficient; the j-th diagonal element of its triangular factor is zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gels_strided_batched()

rocblas_status rocsolver_zgels_strided_batched(rocblas_handle handle, rocblas_operation
trans, const rocblas_int m, const
rocblas_int n, const rocblas_int nrhs,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride
strideB, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgels_strided_batched(rocblas_handle handle, rocblas_operation trans,
const rocblas_int m, const rocblas_int n,
const rocblas_int nrhs, rocblas_float_complex
*A, const rocblas_int lda, const
rocblas_stride strideA, rocblas_float_complex
*B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info,
const rocblas_int batch_count)

3.3. LAPACK Functions 205



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_dgels_strided_batched(rocblas_handle handle, rocblas_operation trans,
const rocblas_int m, const rocblas_int n,
const rocblas_int nrhs, double *A, const
rocblas_int lda, const rocblas_stride strideA,
double *B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgels_strided_batched(rocblas_handle handle, rocblas_operation trans,
const rocblas_int m, const rocblas_int n,
const rocblas_int nrhs, float *A, const
rocblas_int lda, const rocblas_stride strideA,
float *B, const rocblas_int ldb, const
rocblas_stride strideB, rocblas_int *info, const
rocblas_int batch_count)

GELS_STRIDED_BATCHED solves a batch of overdetermined (or underdetermined) linear systems defined
by a set of m-by-n matrices 𝐴𝑖, and corresponding matrices 𝐵𝑖, using the QR factorizations computed by
GEQRF_STRIDED_BATCHED (or the LQ factorizations computed by GELQF_STRIDED_BATCHED).

For each instance in the batch, depending on the value of trans, the problem solved by this function is either of
the form

𝐴𝑖𝑋𝑖 = 𝐵𝑖 not transposed, or
𝐴′

𝑖𝑋𝑖 = 𝐵𝑖 transposed if real, or conjugate transposed if complex

If m >= n (or m < n in the case of transpose/conjugate transpose), the system is overdetermined and a least-
squares solution approximating X_i is found by minimizing

||𝐵𝑖 −𝐴𝑖𝑋𝑖|| (or ||𝐵𝑖 −𝐴′
𝑖𝑋𝑖||)

If m < n (or m >= n in the case of transpose/conjugate transpose), the system is underdetermined and a unique
solution for X_i is chosen such that ||𝑋𝑖|| is minimal.

Parameters

• [in] handle: rocblas_handle.

• [in] trans: rocblas_operation. Specifies the form of the system of equations.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [in] nrhs: rocblas_int. nrhs >= 0. The number of columns of all matrices B_i and X_i in the
batch; i.e., the columns on the right hand side.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA).
On entry, the matrices A_i. On exit, the QR (or LQ) factorizations of A_i as returned by
GEQRF_STRIDED_BATCHED (or GELQF_STRIDED_BATCHED).

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

206 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [inout] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry,
the matrices B_i. On exit, when info = 0, each B_i is overwritten by the solution vectors (and the
residuals in the overdetermined cases) stored as columns.

• [in] ldb: rocblas_int. ldb >= max(m,n). Specifies the leading dimension of matrices B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use case is strideB >= ldb*nrhs

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for solution of A_i. If info[i] = j > 0, the solution of A_i could not be computed
because input matrix A_i is rank deficient; the j-th diagonal element of its triangular factor is zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.6 Symmetric eigensolvers

List of symmetric eigensolvers

• rocsolver_<type>syev()

• rocsolver_<type>syev_batched()

• rocsolver_<type>syev_strided_batched()

• rocsolver_<type>heev()

• rocsolver_<type>heev_batched()

• rocsolver_<type>heev_strided_batched()

• rocsolver_<type>syevd()

• rocsolver_<type>syevd_batched()

• rocsolver_<type>syevd_strided_batched()

• rocsolver_<type>heevd()

• rocsolver_<type>heevd_batched()

• rocsolver_<type>heevd_strided_batched()

• rocsolver_<type>sygv()

• rocsolver_<type>sygv_batched()

• rocsolver_<type>sygv_strided_batched()

• rocsolver_<type>hegv()

• rocsolver_<type>hegv_batched()

• rocsolver_<type>hegv_strided_batched()

• rocsolver_<type>sygvd()

• rocsolver_<type>sygvd_batched()

• rocsolver_<type>sygvd_strided_batched()

• rocsolver_<type>hegvd()

• rocsolver_<type>hegvd_batched()

3.3. LAPACK Functions 207



rocSOLVER Documentation, Release 3.18.0

• rocsolver_<type>hegvd_strided_batched()

rocsolver_<type>syev()

rocblas_status rocsolver_dsyev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill
uplo, const rocblas_int n, double *A, const rocblas_int lda, double
*D, double *E, rocblas_int *info)

rocblas_status rocsolver_ssyev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill
uplo, const rocblas_int n, float *A, const rocblas_int lda, float *D,
float *E, rocblas_int *info)

SYEV computes the eigenvalues and optionally the eigenvectors of a real symmetric matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit,
the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of
A are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

• [out] D: pointer to type. Array on the GPU of dimension n. The eigenvalues of A in increasing
order.

• [out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally
with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged
off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal
elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A
(not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, the
algorithm did not converge. i elements of E did not converge to zero.

208 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>syev_batched()

rocblas_status rocsolver_dsyev_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n, double
*const A[], const rocblas_int lda, double *D, const
rocblas_stride strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_ssyev_batched(rocblas_handle handle, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, float *const A[],
const rocblas_int lda, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride strideE, rocblas_int
*info, const rocblas_int batch_count)

SYEV_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric ma-
trices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the
algorithm converged; otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigen-
values of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0,
E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix
equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond
to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did
not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3. LAPACK Functions 209



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>syev_strided_batched()

rocblas_status rocsolver_dsyev_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, double *A, const rocblas_int
lda, const rocblas_stride strideA, double
*D, const rocblas_stride strideD, double *E,
const rocblas_stride strideE, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_ssyev_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, float *A, const rocblas_int
lda, const rocblas_stride strideA, float *D,
const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

SYEV_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real sym-
metric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged;
otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigen-
values of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0,
E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix
equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond
to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

210 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did
not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heev()

rocblas_status rocsolver_zheev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill
uplo, const rocblas_int n, rocblas_double_complex *A, const
rocblas_int lda, double *D, double *E, rocblas_int *info)

rocblas_status rocsolver_cheev(rocblas_handle handle, const rocblas_evect evect, const rocblas_fill
uplo, const rocblas_int n, rocblas_float_complex *A, const
rocblas_int lda, float *D, float *E, rocblas_int *info)

HEEV computes the eigenvalues and optionally the eigenvectors of a Hermitian matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit,
the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of
A are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

• [out] D: pointer to real type. Array on the GPU of dimension n. The eigenvalues of A in increasing
order.

• [out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work inter-
nally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged
off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal
elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A
(not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, the
algorithm did not converge. i elements of E did not converge to zero.

3.3. LAPACK Functions 211



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>heev_batched()

rocblas_status rocsolver_zheev_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, double *E,
const rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cheev_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int lda,
float *D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const rocblas_int
batch_count)

HEEV_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices
A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the
algorithm converged; otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
eigenvalues of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j]
> 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal
matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged
correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did
not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

212 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>heev_strided_batched()

rocblas_status rocsolver_zheev_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cheev_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

HEEV_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermi-
tian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed depending on the value of
evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged;
otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
eigenvalues of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j]
> 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal
matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged
correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

3.3. LAPACK Functions 213



rocSOLVER Documentation, Release 3.18.0

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0, the algorithm did not converge. i elements of E_j did
not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>syevd()

rocblas_status rocsolver_dsyevd(rocblas_handle handle, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, double *A, const rocblas_int
lda, double *D, double *E, rocblas_int *info)

rocblas_status rocsolver_ssyevd(rocblas_handle handle, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, float *A, const rocblas_int
lda, float *D, float *E, rocblas_int *info)

SYEVD computes the eigenvalues and optionally the eigenvectors of a real symmetric matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit,
the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of
A are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

• [out] D: pointer to type. Array on the GPU of dimension n. The eigenvalues of A in increasing
order.

• [out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally
with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged
off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal
elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A
(not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0 and
evect is rocblas_evect_none, the algorithm did not converge. i elements of E did not converge to zero.
If info = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in
the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

214 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>syevd_batched()

rocblas_status rocsolver_dsyevd_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n, dou-
ble *const A[], const rocblas_int lda, double *D,
const rocblas_stride strideD, double *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_ssyevd_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n,
float *const A[], const rocblas_int lda, float
*D, const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

SYEVD_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real symmetric
matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the
algorithm converged; otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigen-
values of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0,
E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix
equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond
to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm
did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1),
i/(n+1)] to [i%(n+1), i%(n+1)].

3.3. LAPACK Functions 215



rocSOLVER Documentation, Release 3.18.0

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>syevd_strided_batched()

rocblas_status rocsolver_dsyevd_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, double *A, const rocblas_int
lda, const rocblas_stride strideA, double
*D, const rocblas_stride strideD, double
*E, const rocblas_stride strideE, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_ssyevd_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, float *A, const rocblas_int
lda, const rocblas_stride strideA, float
*D, const rocblas_stride strideD, float *E,
const rocblas_stride strideE, rocblas_int
*info, const rocblas_int batch_count)

SYEVD_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of real
symmetric matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the symmetric matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged;
otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). The eigen-
values of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j] > 0,
E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal matrix
equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged correspond
to a subset of the eigenvalues of A_j (not necessarily ordered).

216 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm
did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1),
i/(n+1)] to [i%(n+1), i%(n+1)].

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heevd()

rocblas_status rocsolver_zheevd(rocblas_handle handle, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda, double *D, double *E, rocblas_int *info)

rocblas_status rocsolver_cheevd(rocblas_handle handle, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda, float *D, float *E, rocblas_int *info)

HEEVD computes the eigenvalues and optionally the eigenvectors of a Hermitian matrix A.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrix A is
stored. If uplo indicates lower (or upper), then the upper (or lower) part of A is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On exit,
the eigenvectors of A if they were computed and the algorithm converged; otherwise the contents of
A are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrix A.

• [out] D: pointer to real type. Array on the GPU of dimension n. The eigenvalues of A in increasing
order.

• [out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work inter-
nally with the tridiagonal matrix T associated with A. On exit, if info > 0, it contains the unconverged
off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal
elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues of A
(not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0 and
evect is rocblas_evect_none, the algorithm did not converge. i elements of E did not converge to zero.
If info = i > 0 and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in
the submatrix from [i/(n+1), i/(n+1)] to [i%(n+1), i%(n+1)].

3.3. LAPACK Functions 217



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>heevd_batched()

rocblas_status rocsolver_zheevd_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *const A[], const rocblas_int
lda, double *D, const rocblas_stride strideD, double *E,
const rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cheevd_batched(rocblas_handle handle, const rocblas_evect evect,
const rocblas_fill uplo, const rocblas_int n,
rocblas_float_complex *const A[], const rocblas_int
lda, float *D, const rocblas_stride strideD, float *E,
const rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

HEEVD_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermitian matrices
A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the
algorithm converged; otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
eigenvalues of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j]
> 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal
matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged
correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm
did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1),
i/(n+1)] to [i%(n+1), i%(n+1)].

218 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>heevd_strided_batched()

rocblas_status rocsolver_zheevd_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_double_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cheevd_strided_batched(rocblas_handle handle, const rocblas_evect
evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A,
const rocblas_int lda, const rocblas_stride
strideA, float *D, const rocblas_stride
strideD, float *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

HEEVD_STRIDED_BATCHED computes the eigenvalues and optionally the eigenvectors of a batch of Hermi-
tian matrices A_j.

The eigenvalues are returned in ascending order. The eigenvectors are computed using a divide-and-conquer
algorithm, depending on the value of evect. The computed eigenvectors are orthonormal.

Parameters

• [in] handle: rocblas_handle.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower part of the Hermitian matrices A_j
is stored. If uplo indicates lower (or upper), then the upper (or lower) part of A_j is not used.

• [in] n: rocblas_int. n >= 0. Number of rows and columns of matrices A_j.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j. On exit, the eigenvectors of A_j if they were computed and the algorithm converged;
otherwise the contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). The
eigenvalues of A_j in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_j to the next one D_(j+1).
There is no restriction for the value of strideD. Normal use case is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_j associated with A_j. On exit, if info[j]
> 0, E_j contains the unconverged off-diagonal elements of T_j (or properly speaking, a tridiagonal

3.3. LAPACK Functions 219



rocSOLVER Documentation, Release 3.18.0

matrix equivalent to T_j). The diagonal elements of this matrix are in D_j; those that converged
correspond to a subset of the eigenvalues of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for matrix A_j. If info[j] = i > 0 and evect is rocblas_evect_none, the algorithm
did not converge. i elements of E_j did not converge to zero. If info[j] = i > 0 and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [i/(n+1),
i/(n+1)] to [i%(n+1), i%(n+1)].

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygv()

rocblas_status rocsolver_dsygv(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, double *B, const rocblas_int
ldb, double *D, double *E, rocblas_int *info)

rocblas_status rocsolver_ssygv(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb,
float *D, float *E, rocblas_int *info)

SYGV computes the eigenvalues and (optionally) eigenvectors of a real generalized symmetric-definite eigen-
problem.

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

𝑍𝑇𝐵𝑍 = 𝐼 if 1st or 2nd form, or
𝑍𝑇𝐵−1𝑍 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

220 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix
A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the
upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the
value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the symmetric positive
definite matrix B. On exit, the triangular factor of B as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

• [out] D: pointer to type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing
order.

• [out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally
with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <=
n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix
equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a
subset of the eigenvalues (not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n, j
off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = n + j, the
leading minor of order j of B is not positive definite.

rocsolver_<type>sygv_batched()

rocblas_status rocsolver_dsygv_batched(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const
rocblas_int n, double *const A[], const rocblas_int
lda, double *const B[], const rocblas_int ldb, dou-
ble *D, const rocblas_stride strideD, double *E, const
rocblas_stride strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_ssygv_batched(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const
rocblas_int n, float *const A[], const rocblas_int lda,
float *const B[], const rocblas_int ldb, float *D, const
rocblas_stride strideD, float *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int batch_count)

SYGV_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized
symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝑇
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝑇
𝑖 𝐵

−1
𝑖 𝑍𝑖 = 𝐼 if 3rd form.

3.3. LAPACK Functions 221



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i
of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including
the diagonal) are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned
by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the
eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue
problem. On exit, if 0 < info[i] <= n, E_i contains the unconverged off-diagonal elements of T_i (or
properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are
in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch instance i. If info[i] = j <= n, j off-diagonal elements of an intermediate
tridiagonal form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not
positive definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

222 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sygv_strided_batched()

rocblas_status rocsolver_dsygv_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, dou-
ble *A, const rocblas_int lda, const
rocblas_stride strideA, double *B, const
rocblas_int ldb, const rocblas_stride
strideB, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_ssygv_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n, float *A,
const rocblas_int lda, const rocblas_stride
strideA, float *B, const rocblas_int ldb,
const rocblas_stride strideB, float *D,
const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

SYGV_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real gener-
alized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝑇
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝑇
𝑖 𝐵

−1
𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors.

3.3. LAPACK Functions 223



rocSOLVER Documentation, Release 3.18.0

If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal)
are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry,
the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by
POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the
eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue
problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or
properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are
in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal
form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegv()

rocblas_status rocsolver_zhegv(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *B, const rocblas_int ldb, double *D,
double *E, rocblas_int *info)

rocblas_status rocsolver_chegv(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *B, const rocblas_int ldb, float *D, float *E,
rocblas_int *info)

HEGV computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite
eigenproblem.

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

224 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

𝑍𝐻𝐵𝑍 = 𝐼 if 1st or 2nd form, or
𝑍𝐻𝐵−1𝑍 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the hermitian matrix
A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the
upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the
value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the hermitian positive
definite matrix B. On exit, the triangular factor of B as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

• [out] D: pointer to real type. Array on the GPU of dimension n. On exit, the eigenvalues in
increasing order.

• [out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work
internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0
< info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal
matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond
to a subset of the eigenvalues (not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n, j
off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = n + j, the
leading minor of order j of B is not positive definite.

rocsolver_<type>hegv_batched()

rocblas_status rocsolver_zhegv_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_evect evect, const rocblas_fill uplo,
const rocblas_int n, rocblas_double_complex *const
A[], const rocblas_int lda, rocblas_double_complex
*const B[], const rocblas_int ldb, double *D, const
rocblas_stride strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int batch_count)

3.3. LAPACK Functions 225



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_chegv_batched(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_float_complex *const B[], const
rocblas_int ldb, float *D, const rocblas_stride strideD,
float *E, const rocblas_stride strideE, rocblas_int *info,
const rocblas_int batch_count)

HEGV_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized
hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝐻
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝐻
𝑖 𝐵−1

𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of
eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including
the diagonal) are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned
by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit,
the eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

226 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigen-
value problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i
(or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix
are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal
form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegv_strided_batched()

rocblas_status rocsolver_zhegv_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride
strideB, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_chegv_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride strideA,
rocblas_float_complex *B, const rocblas_int
ldb, const rocblas_stride strideB, float *D,
const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

HEGV_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex
generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed depending on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝐻
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝐻
𝑖 𝐵−1

𝑖 𝑍𝑖 = 𝐼 if 3rd form.

3.3. LAPACK Functions 227



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If
evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are
destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry,
the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by
POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit,
the eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigen-
value problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i
(or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix
are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n, j off-diagonal elements of an intermediate tridiagonal
form did not converge to zero. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

228 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>sygvd()

rocblas_status rocsolver_dsygvd(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, double *A, const rocblas_int lda, double *B, const rocblas_int
ldb, double *D, double *E, rocblas_int *info)

rocblas_status rocsolver_ssygvd(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, float *A, const rocblas_int lda, float *B, const rocblas_int ldb,
float *D, float *E, rocblas_int *info)

SYGVD computes the eigenvalues and (optionally) eigenvectors of a real generalized symmetric-definite eigen-
problem.

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

𝑍𝑇𝐵𝑍 = 𝐼 if 1st or 2nd form, or
𝑍𝑇𝐵−1𝑍 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the symmetric matrix
A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the
upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the
value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the symmetric positive
definite matrix B. On exit, the triangular factor of B as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

• [out] D: pointer to type. Array on the GPU of dimension n. On exit, the eigenvalues in increasing
order.

3.3. LAPACK Functions 229



rocSOLVER Documentation, Release 3.18.0

• [out] E: pointer to type. Array on the GPU of dimension n. This array is used to work internally
with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <=
n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix
equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a
subset of the eigenvalues (not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n
and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not
converge to zero. If info = j <= n and evect is rocblas_evect_original, the algorithm failed to compute
an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info = n + j, the
leading minor of order j of B is not positive definite.

rocsolver_<type>sygvd_batched()

rocblas_status rocsolver_dsygvd_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_evect evect, const rocblas_fill uplo,
const rocblas_int n, double *const A[], const
rocblas_int lda, double *const B[], const rocblas_int
ldb, double *D, const rocblas_stride strideD, double *E,
const rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_ssygvd_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_evect evect, const rocblas_fill uplo,
const rocblas_int n, float *const A[], const
rocblas_int lda, float *const B[], const rocblas_int
ldb, float *D, const rocblas_stride strideD, float *E,
const rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

SYGVD_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real generalized
symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝑇
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝑇
𝑖 𝐵

−1
𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

230 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i
of eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including
the diagonal) are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
On entry, the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned
by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the
eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue
problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or
properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are
in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal ele-
ments of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1),
j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>sygvd_strided_batched()

rocblas_status rocsolver_dsygvd_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n,
double *A, const rocblas_int lda, const
rocblas_stride strideA, double *B, const
rocblas_int ldb, const rocblas_stride
strideB, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

3.3. LAPACK Functions 231



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_ssygvd_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n,
float *A, const rocblas_int lda, const
rocblas_stride strideA, float *B, const
rocblas_int ldb, const rocblas_stride strideB,
float *D, const rocblas_stride strideD, float
*E, const rocblas_stride strideE, rocblas_int
*info, const rocblas_int batch_count)

SYGVD_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of real gen-
eralized symmetric-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝑇
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝑇
𝑖 𝐵

−1
𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the symmetric matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors.
If evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal)
are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry,
the symmetric positive definite matrices B_i. On exit, the triangular factor of B_i as returned by
POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

232 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

• [out] D: pointer to type. Array on the GPU (the size depends on the value of strideD). On exit, the
eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to type. Array on the GPU (the size depends on the value of strideE). This array
is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigenvalue
problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i (or
properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix are
in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal ele-
ments of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1),
j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegvd()

rocblas_status rocsolver_zhegvd(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda,
rocblas_double_complex *B, const rocblas_int ldb, double *D,
double *E, rocblas_int *info)

rocblas_status rocsolver_chegvd(rocblas_handle handle, const rocblas_eform itype, const
rocblas_evect evect, const rocblas_fill uplo, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int lda,
rocblas_float_complex *B, const rocblas_int ldb, float *D, float *E,
rocblas_int *info)

HEGVD computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite
eigenproblem.

The problem solved by this function is either of the form

𝐴𝑋 = 𝜆𝐵𝑋 1st form,
𝐴𝐵𝑋 = 𝜆𝑋 2nd form, or
𝐵𝐴𝑋 = 𝜆𝑋 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

𝑍𝐻𝐵𝑍 = 𝐼 if 1st or 2nd form, or
𝑍𝐻𝐵−1𝑍 = 𝐼 if 3rd form.

3.3. LAPACK Functions 233



rocSOLVER Documentation, Release 3.18.0

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblem.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A and B are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the hermitian matrix
A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the
upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the
value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] B: pointer to type. Array on the GPU of dimension ldb*n. On entry, the hermitian positive
definite matrix B. On exit, the triangular factor of B as returned by POTRF.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B.

• [out] D: pointer to real type. Array on the GPU of dimension n. On exit, the eigenvalues in
increasing order.

• [out] E: pointer to real type. Array on the GPU of dimension n. This array is used to work
internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0
< info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal
matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond
to a subset of the eigenvalues (not necessarily ordered).

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j <= n
and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not
converge to zero. If info = j <= n and evect is rocblas_evect_original, the algorithm failed to compute
an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info = n + j, the
leading minor of order j of B is not positive definite.

rocsolver_<type>hegvd_batched()

rocblas_status rocsolver_zhegvd_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_evect evect, const rocblas_fill uplo,
const rocblas_int n, rocblas_double_complex *const
A[], const rocblas_int lda, rocblas_double_complex
*const B[], const rocblas_int ldb, double *D,
const rocblas_stride strideD, double *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

234 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_chegvd_batched(rocblas_handle handle, const rocblas_eform itype,
const rocblas_evect evect, const rocblas_fill uplo,
const rocblas_int n, rocblas_float_complex *const
A[], const rocblas_int lda, rocblas_float_complex
*const B[], const rocblas_int ldb, float *D,
const rocblas_stride strideD, float *E, const
rocblas_stride strideE, rocblas_int *info, const
rocblas_int batch_count)

HEGVD_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex generalized
hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝐻
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝐻
𝑖 𝐵−1

𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of
eigenvectors. If evect is none, then the upper or lower triangular part of the matrices A_i (including
the diagonal) are destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [out] B: array of pointers to type. Each pointer points to an array on the GPU of dimension ldb*n.
On entry, the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned
by POTRF_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit,
the eigenvalues in increasing order.

3.3. LAPACK Functions 235



rocSOLVER Documentation, Release 3.18.0

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigen-
value problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i
(or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix
are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal ele-
ments of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1),
j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>hegvd_strided_batched()

rocblas_status rocsolver_zhegvd_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_double_complex *B, const
rocblas_int ldb, const rocblas_stride
strideB, double *D, const rocblas_stride
strideD, double *E, const rocblas_stride
strideE, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_chegvd_strided_batched(rocblas_handle handle, const rocblas_eform
itype, const rocblas_evect evect, const
rocblas_fill uplo, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_float_complex *B, const
rocblas_int ldb, const rocblas_stride strideB,
float *D, const rocblas_stride strideD, float
*E, const rocblas_stride strideE, rocblas_int
*info, const rocblas_int batch_count)

HEGVD_STRIDED_BATCHED computes the eigenvalues and (optionally) eigenvectors of a batch of complex
generalized hermitian-definite eigenproblems.

For each instance in the batch, the problem solved by this function is either of the form

𝐴𝑖𝑋𝑖 = 𝜆𝐵𝑖𝑋𝑖 1st form,
𝐴𝑖𝐵𝑖𝑋𝑖 = 𝜆𝑋𝑖 2nd form, or
𝐵𝑖𝐴𝑖𝑋𝑖 = 𝜆𝑋𝑖 3rd form,

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depend-
ing on the value of evect.

236 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

When computed, the matrix 𝑍𝑖 of eigenvectors is normalized as follows:

𝑍𝐻
𝑖 𝐵𝑖𝑍𝑖 = 𝐼 if 1st or 2nd form, or

𝑍𝐻
𝑖 𝐵−1

𝑖 𝑍𝑖 = 𝐼 if 3rd form.

Parameters

• [in] handle: rocblas_handle.

• [in] itype: rocblas_eform. Specifies the form of the generalized eigenproblems.

• [in] evect: rocblas_evect. Specifies whether the eigenvectors are to be computed. If evect is
rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not sup-
ported.

• [in] uplo: rocblas_fill. Specifies whether the upper or lower parts of the matrices A_i and B_i are
stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A_i and B_i are not used.

• [in] n: rocblas_int. n >= 0. The matrix dimensions.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the hermitian matrices A_i. On exit, if evect is original, the normalized matrix Z_i of eigenvectors. If
evect is none, then the upper or lower triangular part of the matrices A_i (including the diagonal) are
destroyed, depending on the value of uplo.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use is strideA >= lda*n.

• [out] B: pointer to type. Array on the GPU (the size depends on the value of strideB). On entry,
the hermitian positive definite matrices B_i. On exit, the triangular factor of B_i as returned by
POTRF_STRIDED_BATCHED.

• [in] ldb: rocblas_int. ldb >= n. Specifies the leading dimension of B_i.

• [in] strideB: rocblas_stride. Stride from the start of one matrix B_i to the next one B_(i+1).
There is no restriction for the value of strideB. Normal use is strideB >= ldb*n.

• [out] D: pointer to real type. Array on the GPU (the size depends on the value of strideD). On exit,
the eigenvalues in increasing order.

• [in] strideD: rocblas_stride. Stride from the start of one vector D_i to the next one D_(i+1).
There is no restriction for the value of strideD. Normal use is strideD >= n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the tridiagonal matrix T_i associated with the ith reduced eigen-
value problem. On exit, if 0 < info[i] <= n, it contains the unconverged off-diagonal elements of T_i
(or properly speaking, a tridiagonal matrix equivalent to T_i). The diagonal elements of this matrix
are in D_i; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_i to the next one E_(i+1).
There is no restriction for the value of strideE. Normal use is strideE >= n.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit of batch i. If info[i] = j <= n and evect is rocblas_evect_none, j off-diagonal ele-
ments of an intermediate tridiagonal form did not converge to zero. If info[i] = j <= n and evect is
rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1),
j/(n+1)] to [j%(n+1), j%(n+1)]. If info[i] = n + j, the leading minor of order j of B_i is not positive
definite.

3.3. LAPACK Functions 237



rocSOLVER Documentation, Release 3.18.0

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.3.7 Singular value decomposition

List of SVD related functions

• rocsolver_<type>gesvd()

• rocsolver_<type>gesvd_batched()

• rocsolver_<type>gesvd_strided_batched()

rocsolver_<type>gesvd()

rocblas_status rocsolver_zgesvd(rocblas_handle handle, const rocblas_svect left_svect, const
rocblas_svect right_svect, const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const rocblas_int lda, dou-
ble *S, rocblas_double_complex *U, const rocblas_int ldu,
rocblas_double_complex *V, const rocblas_int ldv, double *E,
const rocblas_workmode fast_alg, rocblas_int *info)

rocblas_status rocsolver_cgesvd(rocblas_handle handle, const rocblas_svect left_svect, const
rocblas_svect right_svect, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int
lda, float *S, rocblas_float_complex *U, const rocblas_int ldu,
rocblas_float_complex *V, const rocblas_int ldv, float *E, const
rocblas_workmode fast_alg, rocblas_int *info)

rocblas_status rocsolver_dgesvd(rocblas_handle handle, const rocblas_svect left_svect, const
rocblas_svect right_svect, const rocblas_int m, const rocblas_int
n, double *A, const rocblas_int lda, double *S, double *U, const
rocblas_int ldu, double *V, const rocblas_int ldv, double *E, const
rocblas_workmode fast_alg, rocblas_int *info)

rocblas_status rocsolver_sgesvd(rocblas_handle handle, const rocblas_svect left_svect, const
rocblas_svect right_svect, const rocblas_int m, const rocblas_int
n, float *A, const rocblas_int lda, float *S, float *U, const
rocblas_int ldu, float *V, const rocblas_int ldv, float *E, const
rocblas_workmode fast_alg, rocblas_int *info)

GESVD computes the singular values and optionally the singular vectors of a general m-by-n matrix A (Singular
Value Decomposition).

The SVD of matrix A is given by:

𝐴 = 𝑈𝑆𝑉 ′

where the m-by-n matrix S is zero except, possibly, for its min(m,n) diagonal elements, which are the singular
values of A. U and V are orthogonal (unitary) matrices. The first min(m,n) columns of U and V are the left and
right singular vectors of A, respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and
right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of
the right singular vectors, i.e. the rows of V’.

238 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

left_svect and right_svect are rocblas_svect enums that can take the following values:

• rocblas_svect_all: the entire matrix U (or V’) is computed,

• rocblas_svect_singular: only the singular vectors (first min(m,n) columns of U or rows of V’) are com-
puted,

• rocblas_svect_overwrite: the first columns (or rows) of A are overwritten with the singular vectors, or

• rocblas_svect_none: no columns (or rows) of U (or V’) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of A
are destroyed by the time the function returns.

Note When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix A via a QR (or LQ)
factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also
requested, its computation could be sped up as well via executing some intermediate operations out-of-
place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory
workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details,
see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

Parameters

• [in] handle: rocblas_handle.

• [in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

• [in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

• [in] m: rocblas_int. m >= 0. The number of rows of matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the matrix A. On
exit, if left_svect (or right_svect) is equal to overwrite, the first columns (or rows) contain the left (or
right) singular vectors; otherwise, the contents of A are destroyed.

• [in] lda: rocblas_int. lda >= m. The leading dimension of A.

• [out] S: pointer to real type. Array on the GPU of dimension min(m,n). The singular values of A
in decreasing order.

• [out] U: pointer to type. Array on the GPU of dimension ldu*min(m,n) if left_svect is set to sin-
gular, or ldu*m when left_svect is equal to all. The matrix of left singular vectors stored as columns.
Not referenced if left_svect is set to overwrite or none.

• [in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading
dimension of U.

• [out] V: pointer to type. Array on the GPU of dimension ldv*n. The matrix of right singular
vectors stored as rows (transposed / conjugate-transposed). Not referenced if right_svect is set to
overwrite or none.

• [in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular;
or ldv >= 1 otherwise. The leading dimension of V.

• [out] E: pointer to real type. Array on the GPU of dimension min(m,n)-1. This array is used to
work internally with the bidiagonal matrix B associated with A (using BDSQR). On exit, if info >
0, it contains the unconverged off-diagonal elements of B (or properly speaking, a bidiagonal matrix
orthogonally equivalent to B). The diagonal elements of this matrix are in S; those that converged
correspond to a subset of the singular values of A (not necessarily ordered).

3.3. LAPACK Functions 239



rocSOLVER Documentation, Release 3.18.0

• [in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the
fast thin-SVD version of the algorithm when possible.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0,
BDSQR did not converge. i elements of E did not converge to zero.

rocsolver_<type>gesvd_batched()

rocblas_status rocsolver_zgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect,
const rocblas_svect right_svect, const rocblas_int
m, const rocblas_int n, rocblas_double_complex
*const A[], const rocblas_int lda, double *S, const
rocblas_stride strideS, rocblas_double_complex *U,
const rocblas_int ldu, const rocblas_stride strideU,
rocblas_double_complex *V, const rocblas_int ldv,
const rocblas_stride strideV, double *E, const
rocblas_stride strideE, const rocblas_workmode
fast_alg, rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect,
const rocblas_svect right_svect, const rocblas_int m,
const rocblas_int n, rocblas_float_complex *const A[],
const rocblas_int lda, float *S, const rocblas_stride
strideS, rocblas_float_complex *U, const rocblas_int
ldu, const rocblas_stride strideU, rocblas_float_complex
*V, const rocblas_int ldv, const rocblas_stride
strideV, float *E, const rocblas_stride strideE, const
rocblas_workmode fast_alg, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect,
const rocblas_svect right_svect, const rocblas_int
m, const rocblas_int n, double *const A[], const
rocblas_int lda, double *S, const rocblas_stride strideS,
double *U, const rocblas_int ldu, const rocblas_stride
strideU, double *V, const rocblas_int ldv, const
rocblas_stride strideV, double *E, const rocblas_stride
strideE, const rocblas_workmode fast_alg, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_sgesvd_batched(rocblas_handle handle, const rocblas_svect left_svect,
const rocblas_svect right_svect, const rocblas_int
m, const rocblas_int n, float *const A[], const
rocblas_int lda, float *S, const rocblas_stride strideS,
float *U, const rocblas_int ldu, const rocblas_stride
strideU, float *V, const rocblas_int ldv, const
rocblas_stride strideV, float *E, const rocblas_stride
strideE, const rocblas_workmode fast_alg, rocblas_int
*info, const rocblas_int batch_count)

GESVD_BATCHED computes the singular values and optionally the singular vectors of a batch of general
m-by-n matrix A (Singular Value Decomposition).

The SVD of matrix A_j in the batch is given by:

240 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐴𝑗 = 𝑈𝑗𝑆𝑗𝑉
′
𝑗

where the m-by-n matrix 𝑆𝑗 is zero except, possibly, for its min(m,n) diagonal elements, which are the singular
values of 𝐴𝑗 . 𝑈𝑗 and 𝑉𝑗 are orthogonal (unitary) matrices. The first min(m,n) columns of 𝑈𝑗 and 𝑉𝑗 are the left
and right singular vectors of 𝐴𝑗 , respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and
right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of
the right singular vectors, i.e. the rows of 𝑉 ′

𝑗 .

left_svect and right_svect are rocblas_svect enums that can take the following values:

• rocblas_svect_all: the entire matrix 𝑈𝑗 (or 𝑉 ′
𝑗 ) is computed,

• rocblas_svect_singular: only the singular vectors (first min(m,n) columns of 𝑈𝑗 or rows of 𝑉 ′
𝑗 ) are com-

puted,

• rocblas_svect_overwrite: the first columns (or rows) of 𝐴𝑗 are overwritten with the singular vectors, or

• rocblas_svect_none: no columns (or rows) of 𝑈𝑗 (or 𝑉 ′
𝑗 ) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of 𝐴𝑗

are destroyed by the time the function returns.

Note When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix 𝐴𝑗 via a QR (or LQ)
factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also
requested, its computation could be sped up as well via executing some intermediate operations out-of-
place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory
workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details,
see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

Parameters

• [in] handle: rocblas_handle.

• [in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

• [in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_j in the batch.

• [inout] A: Array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the matrices A_j. On exit, if left_svect (or right_svect) is equal to overwrite, the
first columns (or rows) of A_j contain the left (or right) corresponding singular vectors; otherwise, the
contents of A_j are destroyed.

• [in] lda: rocblas_int. lda >= m. The leading dimension of A_j.

• [out] S: pointer to real type. Array on the GPU (the size depends on the value of strideS). The
singular values of A_j in decreasing order.

• [in] strideS: rocblas_stride. Stride from the start of one vector S_j to the next one S_(j+1).
There is no restriction for the value of strideS. Normal use case is strideS >= min(m,n).

• [out] U: pointer to type. Array on the GPU (the side depends on the value of strideU). The matrices
U_j of left singular vectors stored as columns. Not referenced if left_svect is set to overwrite or none.

3.3. LAPACK Functions 241



rocSOLVER Documentation, Release 3.18.0

• [in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading
dimension of U_j.

• [in] strideU: rocblas_stride. Stride from the start of one matrix U_j to the next one U_(j+1).
There is no restriction for the value of strideU. Normal use case is strideU >= ldu*min(m,n) if
left_svect is set to singular, or strideU >= ldu*m when left_svect is equal to all.

• [out] V: pointer to type. Array on the GPU (the size depends on the value of strideV). The matrices
V_j of right singular vectors stored as rows (transposed / conjugate-transposed). Not referenced if
right_svect is set to overwrite or none.

• [in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular;
or ldv >= 1 otherwise. The leading dimension of V.

• [in] strideV: rocblas_stride. Stride from the start of one matrix V_j to the next one V_(j+1).
There is no restriction for the value of strideV. Normal use case is strideV >= ldv*n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the bidiagonal matrix B_j associated with A_j (using BDSQR). On
exit, if info[j] > 0, E_j contains the unconverged off-diagonal elements of B_j (or properly speaking,
a bidiagonal matrix orthogonally equivalent to B_j). The diagonal elements of this matrix are in S_j;
those that converged correspond to a subset of the singular values of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the
fast thin-SVD version of the algorithm when possible.

• [out] info: pointer to a rocblas_int on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0,
BDSQR did not converge. i elements of E_j did not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>gesvd_strided_batched()

rocblas_status rocsolver_zgesvd_strided_batched(rocblas_handle handle, const rocblas_svect
left_svect, const rocblas_svect right_svect,
const rocblas_int m, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, double *S, const rocblas_stride
strideS, rocblas_double_complex *U, const
rocblas_int ldu, const rocblas_stride
strideU, rocblas_double_complex *V, const
rocblas_int ldv, const rocblas_stride
strideV, double *E, const rocblas_stride
strideE, const rocblas_workmode fast_alg,
rocblas_int *info, const rocblas_int
batch_count)

242 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_cgesvd_strided_batched(rocblas_handle handle, const rocblas_svect
left_svect, const rocblas_svect right_svect,
const rocblas_int m, const rocblas_int
n, rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, float *S, const rocblas_stride
strideS, rocblas_float_complex *U, const
rocblas_int ldu, const rocblas_stride strideU,
rocblas_float_complex *V, const rocblas_int
ldv, const rocblas_stride strideV, float
*E, const rocblas_stride strideE, const
rocblas_workmode fast_alg, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_dgesvd_strided_batched(rocblas_handle handle, const rocblas_svect
left_svect, const rocblas_svect right_svect,
const rocblas_int m, const rocblas_int n,
double *A, const rocblas_int lda, const
rocblas_stride strideA, double *S, const
rocblas_stride strideS, double *U, const
rocblas_int ldu, const rocblas_stride
strideU, double *V, const rocblas_int
ldv, const rocblas_stride strideV, double
*E, const rocblas_stride strideE, const
rocblas_workmode fast_alg, rocblas_int *info,
const rocblas_int batch_count)

rocblas_status rocsolver_sgesvd_strided_batched(rocblas_handle handle, const rocblas_svect
left_svect, const rocblas_svect right_svect,
const rocblas_int m, const rocblas_int
n, float *A, const rocblas_int lda, const
rocblas_stride strideA, float *S, const
rocblas_stride strideS, float *U, const
rocblas_int ldu, const rocblas_stride
strideU, float *V, const rocblas_int ldv,
const rocblas_stride strideV, float *E,
const rocblas_stride strideE, const
rocblas_workmode fast_alg, rocblas_int *info,
const rocblas_int batch_count)

GESVD_STRIDED_BATCHED computes the singular values and optionally the singular vectors of a batch of
general m-by-n matrix A (Singular Value Decomposition).

The SVD of matrix A_j in the batch is given by:

𝐴𝑗 = 𝑈𝑗𝑆𝑗𝑉
′
𝑗

where the m-by-n matrix 𝑆𝑗 is zero except, possibly, for its min(m,n) diagonal elements, which are the singular
values of 𝐴𝑗 . 𝑈𝑗 and 𝑉𝑗 are orthogonal (unitary) matrices. The first min(m,n) columns of 𝑈𝑗 and 𝑉𝑗 are the left
and right singular vectors of 𝐴𝑗 , respectively.

The computation of the singular vectors is optional and it is controlled by the function arguments left_svect and
right_svect as described below. When computed, this function returns the transpose (or transpose conjugate) of
the right singular vectors, i.e. the rows of 𝑉 ′

𝑗 .

left_svect and right_svect are rocblas_svect enums that can take the following values:

3.3. LAPACK Functions 243



rocSOLVER Documentation, Release 3.18.0

• rocblas_svect_all: the entire matrix 𝑈𝑗 (or 𝑉 ′
𝑗 ) is computed,

• rocblas_svect_singular: only the singular vectors (first min(m,n) columns of 𝑈𝑗 or rows of 𝑉 ′
𝑗 ) are com-

puted,

• rocblas_svect_overwrite: the first columns (or rows) of 𝐴𝑗 are overwritten with the singular vectors, or

• rocblas_svect_none: no columns (or rows) of 𝑈𝑗 (or 𝑉 ′
𝑗 ) are computed, i.e. no singular vectors.

left_svect and right_svect cannot both be set to overwrite. When neither is set to overwrite, the contents of 𝐴𝑗

are destroyed by the time the function returns.

Note When m >> n (or n >> m) the algorithm could be sped up by compressing the matrix 𝐴𝑗 via a QR (or LQ)
factorization, and working with the triangular factor afterwards (thin-SVD). If the singular vectors are also
requested, its computation could be sped up as well via executing some intermediate operations out-of-
place, and relying more on matrix multiplications (GEMMs); this will require, however, a larger memory
workspace. The parameter fast_alg controls whether the fast algorithm is executed or not. For more details,
see the “Tuning rocSOLVER performance” and “Memory model” sections of the documentation.

Parameters

• [in] handle: rocblas_handle.

• [in] left_svect: rocblas_svect. Specifies how the left singular vectors are computed.

• [in] right_svect: rocblas_svect. Specifies how the right singular vectors are computed.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_j in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the matrices A_j. On exit, if left_svect (or right_svect) is equal to overwrite, the first columns (or
rows) of A_j contain the left (or right) corresponding singular vectors; otherwise, the contents of A_j
are destroyed.

• [in] lda: rocblas_int. lda >= m. The leading dimension of A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n.

• [out] S: pointer to real type. Array on the GPU (the size depends on the value of strideS). The
singular values of A_j in decreasing order.

• [in] strideS: rocblas_stride. Stride from the start of one vector S_j to the next one S_(j+1).
There is no restriction for the value of strideS. Normal use case is strideS >= min(m,n).

• [out] U: pointer to type. Array on the GPU (the side depends on the value of strideU). The matrices
U_j of left singular vectors stored as columns. Not referenced if left_svect is set to overwrite or none.

• [in] ldu: rocblas_int. ldu >= m if left_svect is all or singular; ldu >= 1 otherwise. The leading
dimension of U_j.

• [in] strideU: rocblas_stride. Stride from the start of one matrix U_j to the next one U_(j+1).
There is no restriction for the value of strideU. Normal use case is strideU >= ldu*min(m,n) if
left_svect is set to singular, or strideU >= ldu*m when left_svect is equal to all.

• [out] V: pointer to type. Array on the GPU (the size depends on the value of strideV). The matrices
V_j of right singular vectors stored as rows (transposed / conjugate-transposed). Not referenced if
right_svect is set to overwrite or none.

244 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] ldv: rocblas_int. ldv >= n if right_svect is all; ldv >= min(m,n) if right_svect is set to singular;
or ldv >= 1 otherwise. The leading dimension of V.

• [in] strideV: rocblas_stride. Stride from the start of one matrix V_j to the next one V_(j+1).
There is no restriction for the value of strideV. Normal use case is strideV >= ldv*n.

• [out] E: pointer to real type. Array on the GPU (the size depends on the value of strideE). This
array is used to work internally with the bidiagonal matrix B_j associated with A_j (using BDSQR).
On exit, if info > 0, E_j contains the unconverged off-diagonal elements of B_j (or properly speaking,
a bidiagonal matrix orthogonally equivalent to B_j). The diagonal elements of this matrix are in S_j;
those that converged correspond to a subset of the singular values of A_j (not necessarily ordered).

• [in] strideE: rocblas_stride. Stride from the start of one vector E_j to the next one E_(j+1).
There is no restriction for the value of strideE. Normal use case is strideE >= min(m,n)-1.

• [in] fast_alg: rocblas_workmode. If set to rocblas_outofplace, the function will execute the
fast thin-SVD version of the algorithm when possible.

• [out] info: pointer to a rocblas_int on the GPU. If info[j] = 0, successful exit. If info[j] = i > 0,
BDSQR did not converge. i elements of E_j did not converge to zero.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.4 Lapack-like Functions

Other Lapack-like routines provided by rocSOLVER. These are divided into the following subcategories:

• Triangular factorizations. Based on Gaussian elimination.

• Linear-systems solvers. Based on triangular factorizations.

Note: Throughout the APIs’ descriptions, we use the following notations:

• x[i] stands for the i-th element of vector x, while A[i,j] represents the element in the i-th row and j-th column of
matrix A. Indices are 1-based, i.e. x[1] is the first element of x.

• If X is a real vector or matrix, 𝑋𝑇 indicates its transpose; if X is complex, then 𝑋𝐻 represents its conjugate
transpose. When X could be real or complex, we use X’ to indicate X transposed or X conjugate transposed,
accordingly.

• x_i = 𝑥𝑖; we sometimes use both notations, 𝑥𝑖 when displaying mathematical equations, and x_i in the text
describing the function parameters.

3.4.1 Triangular factorizations

List of Lapack-like triangular factorizations

• rocsolver_<type>getf2_npvt()

• rocsolver_<type>getf2_npvt_batched()

• rocsolver_<type>getf2_npvt_strided_batched()

• rocsolver_<type>getrf_npvt()

• rocsolver_<type>getrf_npvt_batched()

3.4. Lapack-like Functions 245



rocSOLVER Documentation, Release 3.18.0

• rocsolver_<type>getrf_npvt_strided_batched()

rocsolver_<type>getf2_npvt()

rocblas_status rocsolver_zgetf2_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *A, const rocblas_int
lda, rocblas_int *info)

rocblas_status rocsolver_cgetf2_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int
lda, rocblas_int *info)

rocblas_status rocsolver_dgetf2_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_sgetf2_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *A, const rocblas_int lda, rocblas_int
*info)

GETF2_NPVT computes the LU factorization of a general m-by-n matrix A without partial pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

𝐴 = 𝐿𝑈

where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward
stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2 routines instead.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A
to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L
are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U
is singular. U[j,j] is the first zero element in the diagonal. The factorization from this point might be
incomplete.

246 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getf2_npvt_batched()

rocblas_status rocsolver_zgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_double_complex
*const A[], const rocblas_int lda, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_cgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*const A[], const rocblas_int lda, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetf2_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgetf2_npvt_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

GETF2_NPVT_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial
pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝐿𝑖𝑈𝑖

where 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and 𝑈𝑖 is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward
stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2_BATCHED routines
instead.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the
factorizations. The unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero
element in the diagonal. The factorization from this point might be incomplete.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.4. Lapack-like Functions 247



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getf2_npvt_strided_batched()

rocblas_status rocsolver_zgetf2_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgetf2_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetf2_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int
n, double *A, const rocblas_int
lda, const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sgetf2_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int
n, float *A, const rocblas_int
lda, const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

GETF2_NPVT_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices
without partial pivoting.

(This is the unblocked Level-2-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with small and mid-size matrices if optimizations are enabled (default option).
For more details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝐿𝑖𝑈𝑖

where 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and 𝑈𝑖 is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward
stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETF2_STRIDED_BATCHED
routines instead.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The
unit diagonal elements of L_i are not stored.

248 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero
element in the diagonal. The factorization from this point might be incomplete.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_npvt()

rocblas_status rocsolver_zgetrf_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_double_complex *A, const rocblas_int
lda, rocblas_int *info)

rocblas_status rocsolver_cgetrf_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, rocblas_float_complex *A, const rocblas_int
lda, rocblas_int *info)

rocblas_status rocsolver_dgetrf_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, double *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_sgetrf_npvt(rocblas_handle handle, const rocblas_int m, const
rocblas_int n, float *A, const rocblas_int lda, rocblas_int
*info)

GETRF_NPVT computes the LU factorization of a general m-by-n matrix A without partial pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization has the form

𝐴 = 𝐿𝑈

where L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward
stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETRF routines instead.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of the matrix A.

• [in] n: rocblas_int. n >= 0. The number of columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the m-by-n matrix A
to be factored. On exit, the factors L and U from the factorization. The unit diagonal elements of L
are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of A.

3.4. Lapack-like Functions 249



rocSOLVER Documentation, Release 3.18.0

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = j > 0, U
is singular. U[j,j] is the first zero element in the diagonal. The factorization from this point might be
incomplete.

rocsolver_<type>getrf_npvt_batched()

rocblas_status rocsolver_zgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_double_complex
*const A[], const rocblas_int lda, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_cgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, rocblas_float_complex
*const A[], const rocblas_int lda, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetrf_npvt_batched(rocblas_handle handle, const rocblas_int m,
const rocblas_int n, double *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgetrf_npvt_batched(rocblas_handle handle, const rocblas_int
m, const rocblas_int n, float *const A[],
const rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

GETRF_NPVT_BATCHED computes the LU factorization of a batch of general m-by-n matrices without partial
pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝐿𝑖𝑈𝑖

where 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and 𝑈𝑖 is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting is not backward
stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API GETRF_BATCHED routines
instead.

Parameters

• [in] handle: rocblas_handle.

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimension
lda*n. On entry, the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the
factorizations. The unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

250 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero
element in the diagonal. The factorization from this point might be incomplete.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getrf_npvt_strided_batched()

rocblas_status rocsolver_zgetrf_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_double_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgetrf_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int n,
rocblas_float_complex *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetrf_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int
n, double *A, const rocblas_int
lda, const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sgetrf_npvt_strided_batched(rocblas_handle handle, const
rocblas_int m, const rocblas_int
n, float *A, const rocblas_int
lda, const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

GETRF_NPVT_STRIDED_BATCHED computes the LU factorization of a batch of general m-by-n matrices
without partial pivoting.

(This is the blocked Level-3-BLAS version of the algorithm. An optimized internal implementation without
rocBLAS calls could be executed with mid-size matrices if optimizations are enabled (default option). For more
details, see the “Tuning rocSOLVER performance” section of the Library Design Guide).

The factorization of matrix 𝐴𝑖 in the batch has the form

𝐴𝑖 = 𝐿𝑖𝑈𝑖

where 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and 𝑈𝑖 is upper triangular
(upper trapezoidal if m < n).

Note: Although this routine can offer better performance, Gaussian elimination without pivoting
is not backward stable. If numerical accuracy is compromised, use the legacy-LAPACK-like API
GETRF_STRIDED_BATCHED routines instead.

Parameters

• [in] handle: rocblas_handle.

3.4. Lapack-like Functions 251



rocSOLVER Documentation, Release 3.18.0

• [in] m: rocblas_int. m >= 0. The number of rows of all matrices A_i in the batch.

• [in] n: rocblas_int. n >= 0. The number of columns of all matrices A_i in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of strideA). On entry,
the m-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorization. The
unit diagonal elements of L_i are not stored.

• [in] lda: rocblas_int. lda >= m. Specifies the leading dimension of matrices A_i.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_i to the next one A_(i+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[i] = 0,
successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero
element in the diagonal. The factorization from this point might be incomplete.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

3.4.2 Linear-systems solvers

List of Lapack-like linear solvers

• rocsolver_<type>getri_npvt()

• rocsolver_<type>getri_npvt_batched()

• rocsolver_<type>getri_npvt_strided_batched()

• rocsolver_<type>getri_outofplace()

• rocsolver_<type>getri_outofplace_batched()

• rocsolver_<type>getri_outofplace_strided_batched()

• rocsolver_<type>getri_npvt_outofplace()

• rocsolver_<type>getri_npvt_outofplace_batched()

• rocsolver_<type>getri_npvt_outofplace_strided_batched()

rocsolver_<type>getri_npvt()

rocblas_status rocsolver_zgetri_npvt(rocblas_handle handle, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int lda,
rocblas_int *info)

rocblas_status rocsolver_cgetri_npvt(rocblas_handle handle, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda, rocblas_int
*info)

rocblas_status rocsolver_dgetri_npvt(rocblas_handle handle, const rocblas_int n, double *A,
const rocblas_int lda, rocblas_int *info)

rocblas_status rocsolver_sgetri_npvt(rocblas_handle handle, const rocblas_int n, float *A, const
rocblas_int lda, rocblas_int *info)

GETRI_NPVT inverts a general n-by-n matrix A using the LU factorization computed by GETRF_NPVT .

The inverse is computed by solving the linear system

252 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

𝐴−1𝐿 = 𝑈−1

where L is the lower triangular factor of A with unit diagonal elements, and U is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [inout] A: pointer to type. Array on the GPU of dimension lda*n. On entry, the factors L and U of
the factorization A = L*U returned by GETRF_NPVT . On exit, the inverse of A if info = 0; otherwise
undefined.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is
singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_npvt_batched()

rocblas_status rocsolver_zgetri_npvt_batched(rocblas_handle handle, const rocblas_int n,
rocblas_double_complex *const A[], const
rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_cgetri_npvt_batched(rocblas_handle handle, const rocblas_int n,
rocblas_float_complex *const A[], const
rocblas_int lda, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetri_npvt_batched(rocblas_handle handle, const rocblas_int n,
double *const A[], const rocblas_int lda,
rocblas_int *info, const rocblas_int batch_count)

rocblas_status rocsolver_sgetri_npvt_batched(rocblas_handle handle, const rocblas_int n, float
*const A[], const rocblas_int lda, rocblas_int
*info, const rocblas_int batch_count)

GETRI_NPVT_BATCHED inverts a batch of general n-by-n matrices using the LU factorization computed by
GETRF_NPVT_BATCHED.

The inverse of matrix 𝐴𝑗 in the batch is computed by solving the linear system

𝐴−1
𝑗 𝐿𝑗 = 𝑈−1

𝑗

where 𝐿𝑗 is the lower triangular factor of 𝐴𝑗 with unit diagonal elements, and 𝑈𝑗 is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

3.4. Lapack-like Functions 253



rocSOLVER Documentation, Release 3.18.0

• [inout] A: array of pointers to type. Each pointer points to an array on the GPU of dimen-
sion lda*n. On entry, the factors L_j and U_j of the factorization A = L_j*U_j returned by
GETRF_NPVT_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise undefined.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_npvt_strided_batched()

rocblas_status rocsolver_zgetri_npvt_strided_batched(rocblas_handle handle, const
rocblas_int n, rocblas_double_complex
*A, const rocblas_int lda,
const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetri_npvt_strided_batched(rocblas_handle handle, const
rocblas_int n, rocblas_float_complex
*A, const rocblas_int lda,
const rocblas_stride strideA,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_dgetri_npvt_strided_batched(rocblas_handle handle, const
rocblas_int n, double *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgetri_npvt_strided_batched(rocblas_handle handle, const
rocblas_int n, float *A, const
rocblas_int lda, const rocblas_stride
strideA, rocblas_int *info, const
rocblas_int batch_count)

GETRI_NPVT_STRIDED_BATCHED inverts a batch of general n-by-n matrices using the LU factorization
computed by GETRF_NPVT_STRIDED_BATCHED.

The inverse of matrix 𝐴𝑗 in the batch is computed by solving the linear system

𝐴−1
𝑗 𝐿𝑗 = 𝑈−1

𝑗

where 𝐿𝑗 is the lower triangular factor of 𝐴𝑗 with unit diagonal elements, and 𝑈𝑗 is the upper triangular factor.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [inout] A: pointer to type. Array on the GPU (the size depends on the value of
strideA). On entry, the factors L_j and U_j of the factorization A_j = L_j*U_j returned by
GETRF_NPVT_STRIDED_BATCHED. On exit, the inverses of A_j if info[j] = 0; otherwise unde-
fined.

254 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_outofplace()

rocblas_status rocsolver_zgetri_outofplace(rocblas_handle handle, const rocblas_int n,
rocblas_double_complex *A, const rocblas_int
lda, rocblas_int *ipiv, rocblas_double_complex *C,
const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_cgetri_outofplace(rocblas_handle handle, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int lda,
rocblas_int *ipiv, rocblas_float_complex *C, const
rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_dgetri_outofplace(rocblas_handle handle, const rocblas_int n, double
*A, const rocblas_int lda, rocblas_int *ipiv, double
*C, const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_sgetri_outofplace(rocblas_handle handle, const rocblas_int n, float *A,
const rocblas_int lda, rocblas_int *ipiv, float *C,
const rocblas_int ldc, rocblas_int *info)

GETRI_OUTOFPLACE computes the inverse 𝐶 = 𝐴−1 of a general n-by-n matrix A.

The inverse is computed by solving the linear system

𝐴𝐶 = 𝐼

where I is the identity matrix, and A is factorized as 𝐴 = 𝑃𝐿𝑈 as given by GETRF.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factor-
ization A = P*L*U returned by GETRF.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [in] ipiv: pointer to rocblas_int. Array on the GPU of dimension n. The pivot indices returned
by GETRF.

• [out] C: pointer to type. Array on the GPU of dimension ldc*n. If info = 0, the inverse of A.
Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is
singular. U[i,i] is the first zero pivot.

3.4. Lapack-like Functions 255



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getri_outofplace_batched()

rocblas_status rocsolver_zgetri_outofplace_batched(rocblas_handle handle, const
rocblas_int n, rocblas_double_complex
*const A[], const rocblas_int lda,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_double_complex
*const C[], const rocblas_int ldc,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetri_outofplace_batched(rocblas_handle handle, const
rocblas_int n, rocblas_float_complex
*const A[], const rocblas_int lda,
rocblas_int *ipiv, const rocblas_stride
strideP, rocblas_float_complex *const
C[], const rocblas_int ldc, rocblas_int
*info, const rocblas_int batch_count)

rocblas_status rocsolver_dgetri_outofplace_batched(rocblas_handle handle, const
rocblas_int n, double *const A[],
const rocblas_int lda, rocblas_int *ipiv,
const rocblas_stride strideP, double
*const C[], const rocblas_int ldc,
rocblas_int *info, const rocblas_int
batch_count)

rocblas_status rocsolver_sgetri_outofplace_batched(rocblas_handle handle, const
rocblas_int n, float *const A[], const
rocblas_int lda, rocblas_int *ipiv, const
rocblas_stride strideP, float *const C[],
const rocblas_int ldc, rocblas_int *info,
const rocblas_int batch_count)

GETRI_OUTOFPLACE_BATCHED computes the inverse 𝐶𝑗 = 𝐴−1
𝑗 of a batch of general n-by-n matrices 𝐴𝑗 .

The inverse is computed by solving the linear system

𝐴𝑗𝐶𝑗 = 𝐼

where I is the identity matrix, and 𝐴𝑗 is factorized as 𝐴𝑗 = 𝑃𝑗𝐿𝑗𝑈𝑗 as given by GETRF_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [in] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
The factors L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by GETRF_BATCHED.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The pivot indices returned by GETRF_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(i+j).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

256 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

• [out] C: array of pointers to type. Each pointer points to an array on the GPU of dimension ldc*n.
If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

rocsolver_<type>getri_outofplace_strided_batched()

rocblas_status rocsolver_zgetri_outofplace_strided_batched(rocblas_handle handle,
const rocblas_int n,
rocblas_double_complex
*A, const rocblas_int
lda, const rocblas_stride
strideA, rocblas_int *ipiv,
const rocblas_stride strideP,
rocblas_double_complex *C,
const rocblas_int ldc,
const rocblas_stride
strideC, rocblas_int
*info, const rocblas_int
batch_count)

rocblas_status rocsolver_cgetri_outofplace_strided_batched(rocblas_handle handle,
const rocblas_int n,
rocblas_float_complex
*A, const rocblas_int
lda, const rocblas_stride
strideA, rocblas_int *ipiv,
const rocblas_stride strideP,
rocblas_float_complex *C,
const rocblas_int ldc,
const rocblas_stride
strideC, rocblas_int
*info, const rocblas_int
batch_count)

rocblas_status rocsolver_dgetri_outofplace_strided_batched(rocblas_handle handle,
const rocblas_int n, dou-
ble *A, const rocblas_int
lda, const rocblas_stride
strideA, rocblas_int *ipiv,
const rocblas_stride
strideP, double *C, const
rocblas_int ldc, const
rocblas_stride strideC,
rocblas_int *info, const
rocblas_int batch_count)

3.4. Lapack-like Functions 257



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgetri_outofplace_strided_batched(rocblas_handle handle,
const rocblas_int n, float
*A, const rocblas_int
lda, const rocblas_stride
strideA, rocblas_int *ipiv,
const rocblas_stride
strideP, float *C, const
rocblas_int ldc, const
rocblas_stride strideC,
rocblas_int *info, const
rocblas_int batch_count)

GETRI_OUTOFPLACE_STRIDED_BATCHED computes the inverse 𝐶𝑗 = 𝐴−1
𝑗 of a batch of general n-by-n

matrices 𝐴𝑗 .

The inverse is computed by solving the linear system

𝐴𝑗𝐶𝑗 = 𝐼

where I is the identity matrix, and 𝐴𝑗 is factorized as 𝐴𝑗 = 𝑃𝑗𝐿𝑗𝑈𝑗 as given by GETRF_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors
L_j and U_j of the factorization A_j = P_j*L_j*U_j returned by GETRF_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [in] ipiv: pointer to rocblas_int. Array on the GPU (the size depends on the value of strideP).
The pivot indices returned by GETRF_STRIDED_BATCHED.

• [in] strideP: rocblas_stride. Stride from the start of one vector ipiv_j to the next one ipiv_(j+1).
There is no restriction for the value of strideP. Normal use case is strideP >= n.

• [out] C: pointer to type. Array on the GPU (the size depends on the value of strideC). If info[j] =
0, the inverse of matrices A_j. Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

• [in] strideC: rocblas_stride. Stride from the start of one matrix C_j to the next one C_(j+1).
There is no restriction for the value of strideC. Normal use case is strideC >= ldc*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

258 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getri_npvt_outofplace()

rocblas_status rocsolver_zgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int
n, rocblas_double_complex *A, const
rocblas_int lda, rocblas_double_complex *C,
const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_cgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n,
rocblas_float_complex *A, const rocblas_int
lda, rocblas_float_complex *C, const
rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_dgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n,
double *A, const rocblas_int lda, double *C,
const rocblas_int ldc, rocblas_int *info)

rocblas_status rocsolver_sgetri_npvt_outofplace(rocblas_handle handle, const rocblas_int n,
float *A, const rocblas_int lda, float *C,
const rocblas_int ldc, rocblas_int *info)

GETRI_NPVT_OUTOFPLACE computes the inverse 𝐶 = 𝐴−1 of a general n-by-n matrix A without partial
pivoting.

The inverse is computed by solving the linear system

𝐴𝐶 = 𝐼

where I is the identity matrix, and A is factorized as 𝐴 = 𝐿𝑈 as given by GETRF_NPVT .

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of the matrix A.

• [in] A: pointer to type. Array on the GPU of dimension lda*n. The factors L and U of the factor-
ization A = L*U returned by GETRF_NPVT .

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of A.

• [out] C: pointer to type. Array on the GPU of dimension ldc*n. If info = 0, the inverse of A.
Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C.

• [out] info: pointer to a rocblas_int on the GPU. If info = 0, successful exit. If info = i > 0, U is
singular. U[i,i] is the first zero pivot.

rocsolver_<type>getri_npvt_outofplace_batched()

rocblas_status rocsolver_zgetri_npvt_outofplace_batched(rocblas_handle handle,
const rocblas_int n,
rocblas_double_complex *const
A[], const rocblas_int lda,
rocblas_double_complex *const
C[], const rocblas_int ldc,
rocblas_int *info, const
rocblas_int batch_count)

3.4. Lapack-like Functions 259



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_cgetri_npvt_outofplace_batched(rocblas_handle handle,
const rocblas_int n,
rocblas_float_complex *const
A[], const rocblas_int lda,
rocblas_float_complex *const
C[], const rocblas_int ldc,
rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_dgetri_npvt_outofplace_batched(rocblas_handle handle, const
rocblas_int n, double *const A[],
const rocblas_int lda, double
*const C[], const rocblas_int
ldc, rocblas_int *info, const
rocblas_int batch_count)

rocblas_status rocsolver_sgetri_npvt_outofplace_batched(rocblas_handle handle, const
rocblas_int n, float *const A[],
const rocblas_int lda, float
*const C[], const rocblas_int
ldc, rocblas_int *info, const
rocblas_int batch_count)

GETRI_NPVT_OUTOFPLACE_BATCHED computes the inverse 𝐶𝑗 = 𝐴−1
𝑗 of a batch of general n-by-n

matrices 𝐴𝑗 without partial pivoting.

The inverse is computed by solving the linear system

𝐴𝑗𝐶𝑗 = 𝐼

where I is the identity matrix, and 𝐴𝑗 is factorized as 𝐴𝑗 = 𝐿𝑗𝑈𝑗 as given by GETRF_NPVT_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [in] A: array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
The factors L_j and U_j of the factorization A_j = L_j*U_j returned by GETRF_NPVT_BATCHED.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [out] C: array of pointers to type. Each pointer points to an array on the GPU of dimension ldc*n.
If info[j] = 0, the inverse of matrices A_j. Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

260 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_<type>getri_npvt_outofplace_strided_batched()

rocblas_status rocsolver_zgetri_npvt_outofplace_strided_batched(rocblas_handle
handle, const
rocblas_int n,
rocblas_double_complex
*A, const
rocblas_int
lda, const
rocblas_stride strideA,
rocblas_double_complex
*C, const
rocblas_int ldc,
const rocblas_stride
strideC, rocblas_int
*info, const
rocblas_int
batch_count)

rocblas_status rocsolver_cgetri_npvt_outofplace_strided_batched(rocblas_handle
handle, const
rocblas_int n,
rocblas_float_complex
*A, const
rocblas_int
lda, const
rocblas_stride strideA,
rocblas_float_complex
*C, const
rocblas_int ldc,
const rocblas_stride
strideC, rocblas_int
*info, const
rocblas_int
batch_count)

rocblas_status rocsolver_dgetri_npvt_outofplace_strided_batched(rocblas_handle
handle, const
rocblas_int n, dou-
ble *A, const
rocblas_int lda,
const rocblas_stride
strideA, double *C,
const rocblas_int
ldc, const
rocblas_stride strideC,
rocblas_int *info,
const rocblas_int
batch_count)

3.4. Lapack-like Functions 261



rocSOLVER Documentation, Release 3.18.0

rocblas_status rocsolver_sgetri_npvt_outofplace_strided_batched(rocblas_handle
handle, const
rocblas_int n,
float *A, const
rocblas_int lda,
const rocblas_stride
strideA, float *C,
const rocblas_int
ldc, const
rocblas_stride strideC,
rocblas_int *info,
const rocblas_int
batch_count)

GETRI_NPVT_OUTOFPLACE_STRIDED_BATCHED computes the inverse 𝐶𝑗 = 𝐴−1
𝑗 of a batch of general

n-by-n matrices 𝐴𝑗 without partial pivoting.

The inverse is computed by solving the linear system

𝐴𝑗𝐶𝑗 = 𝐼

where I is the identity matrix, and 𝐴𝑗 is factorized as 𝐴𝑗 = 𝐿𝑗𝑈𝑗 as given by
GETRF_NPVT_STRIDED_BATCHED.

Parameters

• [in] handle: rocblas_handle.

• [in] n: rocblas_int. n >= 0. The number of rows and columns of all matrices A_j in the batch.

• [in] A: pointer to type. Array on the GPU (the size depends on the value of strideA). The factors
L_j and U_j of the factorization A_j = L_j*U_j returned by GETRF_NPVT_STRIDED_BATCHED.

• [in] lda: rocblas_int. lda >= n. Specifies the leading dimension of matrices A_j.

• [in] strideA: rocblas_stride. Stride from the start of one matrix A_j to the next one A_(j+1).
There is no restriction for the value of strideA. Normal use case is strideA >= lda*n

• [out] C: pointer to type. Array on the GPU (the size depends on the value of strideC). If info[j] =
0, the inverse of matrices A_j. Otherwise, undefined.

• [in] ldc: rocblas_int. ldc >= n. Specifies the leading dimension of C_j.

• [in] strideC: rocblas_stride. Stride from the start of one matrix C_j to the next one C_(j+1).
There is no restriction for the value of strideC. Normal use case is strideC >= ldc*n

• [out] info: pointer to rocblas_int. Array of batch_count integers on the GPU. If info[j] = 0,
successful exit for inversion of A_j. If info[j] = i > 0, U_j is singular. U_j[i,i] is the first zero pivot.

• [in] batch_count: rocblas_int. batch_count >= 0. Number of matrices in the batch.

262 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

3.5 Logging Functions and Library Information

3.5.1 Logging functions

These functions control rocSOLVER’s Multi-level Logging capabilities.

List of logging functions

• rocsolver_log_begin()

• rocsolver_log_end()

• rocsolver_log_set_layer_mode()

• rocsolver_log_set_max_levels()

• rocsolver_log_restore_defaults()

• rocsolver_log_write_profile()

• rocsolver_log_flush_profile()

rocsolver_log_begin()

rocblas_status rocsolver_log_begin(void)
LOG_BEGIN begins a rocSOLVER multi-level logging session.

Initializes the rocSOLVER logging environment with default values (no logging and one level depth).
Default mode can be overridden by using the environment variables ROCSOLVER_LAYER and ROC-
SOLVER_LEVELS.

This function also sets the streams where the log results will be outputted. The default is STDERR for all
the modes. This default can also be overridden using the environment variable ROCSOLVER_LOG_PATH,
or specifically ROCSOLVER_LOG_TRACE_PATH, ROCSOLVER_LOG_BENCH_PATH, and/or ROC-
SOLVER_LOG_PROFILE_PATH.

rocsolver_log_end()

rocblas_status rocsolver_log_end(void)
LOG_END ends the multi-level rocSOLVER logging session.

If applicable, this function also prints the profile logging results before cleaning the logging environment.

rocsolver_log_set_layer_mode()

rocblas_status rocsolver_log_set_layer_mode(const rocblas_layer_mode_flags layer_mode)
LOG_SET_LAYER_MODE sets the logging mode for the rocSOLVER multi-level logging environment.

Parameters

• [in] layer_mode: rocblas_layer_mode_flags. Specifies the logging mode.

3.5. Logging Functions and Library Information 263



rocSOLVER Documentation, Release 3.18.0

rocsolver_log_set_max_levels()

rocblas_status rocsolver_log_set_max_levels(const rocblas_int max_levels)
LOG_SET_MAX_LEVELS sets the maximum trace log depth for the rocSOLVER multi-level logging environ-
ment.

Parameters

• [in] max_levels: rocblas_int. max_levels >= 1. Specifies the maximum depth at which nested
function calls will appear in the trace and profile logs.

rocsolver_log_restore_defaults()

rocblas_status rocsolver_log_restore_defaults(void)
LOG_RESTORE_DEFAULTS restores the default values of the rocSOLVER multi-level logging environment.

This function sets the logging mode and maximum trace log depth to their default values (no logging and one
level depth).

rocsolver_log_write_profile()

rocblas_status rocsolver_log_write_profile(void)
LOG_WRITE_PROFILE prints the profile logging results.

rocsolver_log_flush_profile()

rocblas_status rocsolver_log_flush_profile(void)
LOG_FLUSH_PROFILE prints the profile logging results and clears the profile record.

3.5.2 Library information

List of library information functions

• rocsolver_get_version_string()

• rocsolver_get_version_string_size()

rocsolver_get_version_string()

rocblas_status rocsolver_get_version_string(char *buf, size_t len)
GET_VERSION_STRING Queries the library version.

Parameters

• [out] buf: A buffer that the version string will be written into.

• [in] len: The size of the given buffer in bytes.

264 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_get_version_string_size()

rocblas_status rocsolver_get_version_string_size(size_t *len)
GET_VERSION_STRING_SIZE Queries the minimum buffer size for a successful call to roc-
solver_get_version_string.

Parameters

• [out] len: pointer to size_t. The minimum length of buffer to pass to roc-
solver_get_version_string.

3.6 Deprecated

Originally, rocSOLVER maintained its own types and helpers as aliases to those of rocBLAS. These aliases are now
deprecated. See the rocBLAS types and rocBLAS auxiliary functions documentation for information on the suggested
replacements.

• Deprecated Types.

• Deprecated Auxiliary functions.

3.6.1 Types

List of deprecated types

• rocsolver_int

• rocsolver_handle

• rocsolver_direction

• rocsolver_storev

• rocsolver_operation

• rocsolver_fill

• rocsolver_diagonal

• rocsolver_side

• rocsolver_status

rocsolver_int

typedef rocblas_int rocsolver_int

Deprecated:
Use rocblas_int.

Deprecated since version 3.5: Use rocblas_int.

3.6. Deprecated 265

https://rocblas.readthedocs.io/en/latest/functions.html#rocblas-types
https://rocblas.readthedocs.io/en/latest/functions.html#auxiliary


rocSOLVER Documentation, Release 3.18.0

rocsolver_handle

typedef rocblas_handle rocsolver_handle

Deprecated:
Use rocblas_handle.

Deprecated since version 3.5: Use rocblas_handle.

rocsolver_direction

typedef rocblas_direct rocsolver_direction

Deprecated:
Use rocblas_direct

Deprecated since version 3.5: Use rocblas_direct.

rocsolver_storev

typedef rocblas_storev rocsolver_storev

Deprecated:
Use rocblas_storev.

Deprecated since version 3.5: Use rocblas_storev .

rocsolver_operation

typedef rocblas_operation rocsolver_operation

Deprecated:
Use rocblas_operation.

Deprecated since version 3.5: Use rocblas_operation.

rocsolver_fill

typedef rocblas_fill rocsolver_fill

Deprecated:
Use rocblas_fill.

Deprecated since version 3.5: Use rocblas_fill.

rocsolver_diagonal

typedef rocblas_diagonal rocsolver_diagonal

Deprecated:
Use rocblas_diagonal.

Deprecated since version 3.5: Use rocblas_diagonal.

266 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_side

typedef rocblas_side rocsolver_side

Deprecated:
Use rocblas_stide.

Deprecated since version 3.5: Use rocblas_side.

rocsolver_status

typedef rocblas_status rocsolver_status

Deprecated:
Use rocblas_status.

Deprecated since version 3.5: Use rocblas_status.

3.6.2 Auxiliary functions

List of deprecated helpers

• rocsolver_create_handle()

• rocsolver_destroy_handle()

• rocsolver_set_stream()

• rocsolver_get_stream()

• rocsolver_set_vector()

• rocsolver_get_vector()

• rocsolver_set_matrix()

• rocsolver_get_matrix()

rocsolver_create_handle()

rocsolver_status rocsolver_create_handle(rocsolver_handle *handle)

Deprecated:
Use rocblas_create_handle.

Deprecated since version 3.5: Use rocblas_create_handle().

3.6. Deprecated 267



rocSOLVER Documentation, Release 3.18.0

rocsolver_destroy_handle()

rocsolver_status rocsolver_destroy_handle(rocsolver_handle handle)

Deprecated:
Use rocblas_destroy_handle.

Deprecated since version 3.5: Use rocblas_destroy_handle().

rocsolver_set_stream()

rocsolver_status rocsolver_set_stream(rocsolver_handle handle, hipStream_t stream)

Deprecated:
Use rocblas_set_stream.

Deprecated since version 3.5: Use rocblas_set_stream().

rocsolver_get_stream()

rocsolver_status rocsolver_get_stream(rocsolver_handle handle, hipStream_t *stream)

Deprecated:
Use rocblas_get_stream.

Deprecated since version 3.5: Use rocblas_get_stream().

rocsolver_set_vector()

rocsolver_status rocsolver_set_vector(rocsolver_int n, rocsolver_int elem_size, const void *x, roc-
solver_int incx, void *y, rocsolver_int incy)

Deprecated:
Use rocblas_set_vector.

Deprecated since version 3.5: Use rocblas_set_vector().

rocsolver_get_vector()

rocsolver_status rocsolver_get_vector(rocsolver_int n, rocsolver_int elem_size, const void *x, roc-
solver_int incx, void *y, rocsolver_int incy)

Deprecated:
Use rocblas_get_vector.

Deprecated since version 3.5: Use rocblas_get_vector().

268 Chapter 3. rocSOLVER API



rocSOLVER Documentation, Release 3.18.0

rocsolver_set_matrix()

rocsolver_status rocsolver_set_matrix(rocsolver_int rows, rocsolver_int cols, rocsolver_int elem_size,
const void *a, rocsolver_int lda, void *b, rocsolver_int ldb)

Deprecated:
Use rocblas_set_matrix.

Deprecated since version 3.5: Use rocblas_set_matrix().

rocsolver_get_matrix()

rocsolver_status rocsolver_get_matrix(rocsolver_int rows, rocsolver_int cols, rocsolver_int elem_size,
const void *a, rocsolver_int lda, void *b, rocsolver_int ldb)

Deprecated:
Use rocblas_get_matrix.

Deprecated since version 3.5: Use rocblas_get_matrix().

3.6. Deprecated 269



rocSOLVER Documentation, Release 3.18.0

270 Chapter 3. rocSOLVER API



CHAPTER

FOUR

LICENSE & ATTRIBUTIONS

Copyright (c) 2018-2021 Advanced Micro Devices, Inc.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

This product includes code derived from the LAPACK and MAGMA projects. Copyright holders for these projects
are indicated below, and distributed under their license terms as specified.

– LAPACK –

• Copyright (c) 1992-2013 The University of Tennessee and The University of Tennessee Research Foundation.
All rights reserved.

• Copyright (c) 2000-2013 The University of California Berkeley. All rights reserved.

• Copyright (c) 2006-2013 The University of Colorado Denver. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

271



rocSOLVER Documentation, Release 3.18.0

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright,
or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient
for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

– MAGMA –

Copyright (c) 2009-2021 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer listed in this license in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any express or implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are dis-
claimed. in no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss
of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract,
strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if
advised of the possibility of such damage.

272 Chapter 4. License & Attributions



INDEX

G
GEBRD_BLOCKSIZE (C macro), 33
GEBRD_GEBD2_SWITCHSIZE (C macro), 33
GEQxF_BLOCKSIZE (C macro), 30
GEQxF_GEQx2_SWITCHSIZE (C macro), 30
GExQF_BLOCKSIZE (C macro), 30
GExQF_GExQ2_SWITCHSIZE (C macro), 31

P
POTRF_BLOCKSIZE (C macro), 35
POTRF_POTF2_SWITCHSIZE (C macro), 36

R
rocblas_direct (C enum), 39
rocblas_direct.rocblas_backward_direction

(C enumerator), 39
rocblas_direct.rocblas_forward_direction

(C enumerator), 39
rocblas_eform (C enum), 41
rocblas_eform.rocblas_eform_abx (C enu-

merator), 41
rocblas_eform.rocblas_eform_ax (C enumer-

ator), 41
rocblas_eform.rocblas_eform_bax (C enu-

merator), 41
rocblas_evect (C enum), 40
rocblas_evect.rocblas_evect_none (C enu-

merator), 40
rocblas_evect.rocblas_evect_original (C

enumerator), 40
rocblas_evect.rocblas_evect_tridiagonal

(C enumerator), 40
rocblas_storev (C enum), 40
rocblas_storev.rocblas_column_wise (C

enumerator), 40
rocblas_storev.rocblas_row_wise (C enu-

merator), 40
rocblas_svect (C enum), 40
rocblas_svect.rocblas_svect_all (C enu-

merator), 40
rocblas_svect.rocblas_svect_none (C enu-

merator), 40

rocblas_svect.rocblas_svect_overwrite
(C enumerator), 40

rocblas_svect.rocblas_svect_singular (C
enumerator), 40

rocblas_workmode (C enum), 41
rocblas_workmode.rocblas_inplace (C enu-

merator), 41
rocblas_workmode.rocblas_outofplace (C

enumerator), 41
rocsolver_cbdsqr (C function), 50
rocsolver_cgebd2 (C function), 140
rocsolver_cgebd2_batched (C function), 141
rocsolver_cgebd2_strided_batched (C func-

tion), 143
rocsolver_cgebrd (C function), 145
rocsolver_cgebrd_batched (C function), 146
rocsolver_cgebrd_strided_batched (C func-

tion), 148
rocsolver_cgelq2 (C function), 132
rocsolver_cgelq2_batched (C function), 133
rocsolver_cgelq2_strided_batched (C func-

tion), 134
rocsolver_cgelqf (C function), 135
rocsolver_cgelqf_batched (C function), 136
rocsolver_cgelqf_strided_batched (C func-

tion), 138
rocsolver_cgels (C function), 203
rocsolver_cgels_batched (C function), 204
rocsolver_cgels_strided_batched (C func-

tion), 205
rocsolver_cgeql2 (C function), 125
rocsolver_cgeql2_batched (C function), 126
rocsolver_cgeql2_strided_batched (C func-

tion), 127
rocsolver_cgeqlf (C function), 129
rocsolver_cgeqlf_batched (C function), 130
rocsolver_cgeqlf_strided_batched (C func-

tion), 131
rocsolver_cgeqr2 (C function), 111
rocsolver_cgeqr2_batched (C function), 112
rocsolver_cgeqr2_strided_batched (C func-

tion), 113

273



rocSOLVER Documentation, Release 3.18.0

rocsolver_cgeqrf (C function), 115
rocsolver_cgeqrf_batched (C function), 116
rocsolver_cgeqrf_strided_batched (C func-

tion), 117
rocsolver_cgerq2 (C function), 118
rocsolver_cgerq2_batched (C function), 119
rocsolver_cgerq2_strided_batched (C func-

tion), 120
rocsolver_cgerqf (C function), 122
rocsolver_cgerqf_batched (C function), 123
rocsolver_cgerqf_strided_batched (C func-

tion), 124
rocsolver_cgesv (C function), 189
rocsolver_cgesv_batched (C function), 190
rocsolver_cgesv_strided_batched (C func-

tion), 192
rocsolver_cgesvd (C function), 238
rocsolver_cgesvd_batched (C function), 240
rocsolver_cgesvd_strided_batched (C func-

tion), 242
rocsolver_cgetf2 (C function), 94
rocsolver_cgetf2_batched (C function), 95
rocsolver_cgetf2_npvt (C function), 246
rocsolver_cgetf2_npvt_batched (C function),

247
rocsolver_cgetf2_npvt_strided_batched

(C function), 248
rocsolver_cgetf2_strided_batched (C func-

tion), 96
rocsolver_cgetrf (C function), 97
rocsolver_cgetrf_batched (C function), 98
rocsolver_cgetrf_npvt (C function), 249
rocsolver_cgetrf_npvt_batched (C function),

250
rocsolver_cgetrf_npvt_strided_batched

(C function), 251
rocsolver_cgetrf_strided_batched (C func-

tion), 99
rocsolver_cgetri (C function), 183
rocsolver_cgetri_batched (C function), 184
rocsolver_cgetri_npvt (C function), 252
rocsolver_cgetri_npvt_batched (C function),

253
rocsolver_cgetri_npvt_outofplace (C func-

tion), 259
rocsolver_cgetri_npvt_outofplace_batched

(C function), 260
rocsolver_cgetri_npvt_outofplace_strided_batched

(C function), 261
rocsolver_cgetri_npvt_strided_batched

(C function), 254
rocsolver_cgetri_outofplace (C function),

255
rocsolver_cgetri_outofplace_batched (C

function), 256
rocsolver_cgetri_outofplace_strided_batched

(C function), 257
rocsolver_cgetri_strided_batched (C func-

tion), 185
rocsolver_cgetrs (C function), 186
rocsolver_cgetrs_batched (C function), 187
rocsolver_cgetrs_strided_batched (C func-

tion), 188
rocsolver_cheev (C function), 211
rocsolver_cheev_batched (C function), 212
rocsolver_cheev_strided_batched (C func-

tion), 213
rocsolver_cheevd (C function), 217
rocsolver_cheevd_batched (C function), 218
rocsolver_cheevd_strided_batched (C func-

tion), 219
rocsolver_chegs2 (C function), 169
rocsolver_chegs2_batched (C function), 170
rocsolver_chegs2_strided_batched (C func-

tion), 171
rocsolver_chegst (C function), 176
rocsolver_chegst_batched (C function), 177
rocsolver_chegst_strided_batched (C func-

tion), 178
rocsolver_chegv (C function), 224
rocsolver_chegv_batched (C function), 225
rocsolver_chegv_strided_batched (C func-

tion), 227
rocsolver_chegvd (C function), 233
rocsolver_chegvd_batched (C function), 234
rocsolver_chegvd_strided_batched (C func-

tion), 236
rocsolver_chetd2 (C function), 154
rocsolver_chetd2_batched (C function), 155
rocsolver_chetd2_strided_batched (C func-

tion), 156
rocsolver_chetrd (C function), 162
rocsolver_chetrd_batched (C function), 163
rocsolver_chetrd_strided_batched (C func-

tion), 164
rocsolver_clabrd (C function), 48
rocsolver_clacgv (C function), 42
rocsolver_clarf (C function), 45
rocsolver_clarfb (C function), 46
rocsolver_clarfg (C function), 43
rocsolver_clarft (C function), 44
rocsolver_claswp (C function), 42
rocsolver_clasyf (C function), 56
rocsolver_clatrd (C function), 51
rocsolver_cposv (C function), 199
rocsolver_cposv_batched (C function), 200
rocsolver_cposv_strided_batched (C func-

tion), 201

274 Index



rocSOLVER Documentation, Release 3.18.0

rocsolver_cpotf2 (C function), 88
rocsolver_cpotf2_batched (C function), 89
rocsolver_cpotf2_strided_batched (C func-

tion), 90
rocsolver_cpotrf (C function), 91
rocsolver_cpotrf_batched (C function), 92
rocsolver_cpotrf_strided_batched (C func-

tion), 93
rocsolver_cpotri (C function), 193
rocsolver_cpotri_batched (C function), 194
rocsolver_cpotri_strided_batched (C func-

tion), 195
rocsolver_cpotrs (C function), 196
rocsolver_cpotrs_batched (C function), 197
rocsolver_cpotrs_strided_batched (C func-

tion), 198
rocsolver_create_handle (C function), 267
rocsolver_cstedc (C function), 54
rocsolver_csteqr (C function), 53
rocsolver_csytf2 (C function), 100
rocsolver_csytf2_batched (C function), 102
rocsolver_csytf2_strided_batched (C func-

tion), 104
rocsolver_csytrf (C function), 105
rocsolver_csytrf_batched (C function), 107
rocsolver_csytrf_strided_batched (C func-

tion), 109
rocsolver_ctrtri (C function), 180
rocsolver_ctrtri_batched (C function), 181
rocsolver_ctrtri_strided_batched (C func-

tion), 182
rocsolver_cung2l (C function), 75
rocsolver_cung2r (C function), 72
rocsolver_cungbr (C function), 76
rocsolver_cungl2 (C function), 74
rocsolver_cunglq (C function), 74
rocsolver_cungql (C function), 76
rocsolver_cungqr (C function), 73
rocsolver_cungtr (C function), 77
rocsolver_cunm2l (C function), 83
rocsolver_cunm2r (C function), 78
rocsolver_cunmbr (C function), 85
rocsolver_cunml2 (C function), 80
rocsolver_cunmlq (C function), 82
rocsolver_cunmql (C function), 84
rocsolver_cunmqr (C function), 79
rocsolver_cunmtr (C function), 86
rocsolver_dbdsqr (C function), 50
rocsolver_destroy_handle (C function), 268
rocsolver_dgebd2 (C function), 140
rocsolver_dgebd2_batched (C function), 141
rocsolver_dgebd2_strided_batched (C func-

tion), 143
rocsolver_dgebrd (C function), 145

rocsolver_dgebrd_batched (C function), 146
rocsolver_dgebrd_strided_batched (C func-

tion), 148
rocsolver_dgelq2 (C function), 132
rocsolver_dgelq2_batched (C function), 133
rocsolver_dgelq2_strided_batched (C func-

tion), 134
rocsolver_dgelqf (C function), 135
rocsolver_dgelqf_batched (C function), 136
rocsolver_dgelqf_strided_batched (C func-

tion), 138
rocsolver_dgels (C function), 203
rocsolver_dgels_batched (C function), 204
rocsolver_dgels_strided_batched (C func-

tion), 205
rocsolver_dgeql2 (C function), 125
rocsolver_dgeql2_batched (C function), 126
rocsolver_dgeql2_strided_batched (C func-

tion), 127
rocsolver_dgeqlf (C function), 129
rocsolver_dgeqlf_batched (C function), 130
rocsolver_dgeqlf_strided_batched (C func-

tion), 131
rocsolver_dgeqr2 (C function), 111
rocsolver_dgeqr2_batched (C function), 112
rocsolver_dgeqr2_strided_batched (C func-

tion), 114
rocsolver_dgeqrf (C function), 115
rocsolver_dgeqrf_batched (C function), 116
rocsolver_dgeqrf_strided_batched (C func-

tion), 117
rocsolver_dgerq2 (C function), 118
rocsolver_dgerq2_batched (C function), 119
rocsolver_dgerq2_strided_batched (C func-

tion), 120
rocsolver_dgerqf (C function), 122
rocsolver_dgerqf_batched (C function), 123
rocsolver_dgerqf_strided_batched (C func-

tion), 124
rocsolver_dgesv (C function), 189
rocsolver_dgesv_batched (C function), 190
rocsolver_dgesv_strided_batched (C func-

tion), 192
rocsolver_dgesvd (C function), 238
rocsolver_dgesvd_batched (C function), 240
rocsolver_dgesvd_strided_batched (C func-

tion), 243
rocsolver_dgetf2 (C function), 94
rocsolver_dgetf2_batched (C function), 95
rocsolver_dgetf2_npvt (C function), 246
rocsolver_dgetf2_npvt_batched (C function),

247
rocsolver_dgetf2_npvt_strided_batched

(C function), 248

Index 275



rocSOLVER Documentation, Release 3.18.0

rocsolver_dgetf2_strided_batched (C func-
tion), 96

rocsolver_dgetrf (C function), 97
rocsolver_dgetrf_batched (C function), 98
rocsolver_dgetrf_npvt (C function), 249
rocsolver_dgetrf_npvt_batched (C function),

250
rocsolver_dgetrf_npvt_strided_batched

(C function), 251
rocsolver_dgetrf_strided_batched (C func-

tion), 99
rocsolver_dgetri (C function), 183
rocsolver_dgetri_batched (C function), 184
rocsolver_dgetri_npvt (C function), 252
rocsolver_dgetri_npvt_batched (C function),

253
rocsolver_dgetri_npvt_outofplace (C func-

tion), 259
rocsolver_dgetri_npvt_outofplace_batched

(C function), 260
rocsolver_dgetri_npvt_outofplace_strided_batched

(C function), 261
rocsolver_dgetri_npvt_strided_batched

(C function), 254
rocsolver_dgetri_outofplace (C function),

255
rocsolver_dgetri_outofplace_batched (C

function), 256
rocsolver_dgetri_outofplace_strided_batched

(C function), 257
rocsolver_dgetri_strided_batched (C func-

tion), 185
rocsolver_dgetrs (C function), 186
rocsolver_dgetrs_batched (C function), 187
rocsolver_dgetrs_strided_batched (C func-

tion), 188
rocsolver_diagonal (C type), 266
rocsolver_direction (C type), 266
rocsolver_dlabrd (C function), 48
rocsolver_dlarf (C function), 46
rocsolver_dlarfb (C function), 46
rocsolver_dlarfg (C function), 43
rocsolver_dlarft (C function), 44
rocsolver_dlaswp (C function), 42
rocsolver_dlasyf (C function), 56
rocsolver_dlatrd (C function), 51
rocsolver_dorg2l (C function), 60
rocsolver_dorg2r (C function), 57
rocsolver_dorgbr (C function), 61
rocsolver_dorgl2 (C function), 59
rocsolver_dorglq (C function), 59
rocsolver_dorgql (C function), 61
rocsolver_dorgqr (C function), 58
rocsolver_dorgtr (C function), 62

rocsolver_dorm2l (C function), 67
rocsolver_dorm2r (C function), 63
rocsolver_dormbr (C function), 69
rocsolver_dorml2 (C function), 65
rocsolver_dormlq (C function), 66
rocsolver_dormql (C function), 68
rocsolver_dormqr (C function), 64
rocsolver_dormtr (C function), 70
rocsolver_dposv (C function), 199
rocsolver_dposv_batched (C function), 200
rocsolver_dposv_strided_batched (C func-

tion), 201
rocsolver_dpotf2 (C function), 88
rocsolver_dpotf2_batched (C function), 89
rocsolver_dpotf2_strided_batched (C func-

tion), 90
rocsolver_dpotrf (C function), 91
rocsolver_dpotrf_batched (C function), 92
rocsolver_dpotrf_strided_batched (C func-

tion), 93
rocsolver_dpotri (C function), 193
rocsolver_dpotri_batched (C function), 194
rocsolver_dpotri_strided_batched (C func-

tion), 195
rocsolver_dpotrs (C function), 196
rocsolver_dpotrs_batched (C function), 197
rocsolver_dpotrs_strided_batched (C func-

tion), 198
rocsolver_dstedc (C function), 54
rocsolver_dsteqr (C function), 53
rocsolver_dsterf (C function), 53
rocsolver_dsyev (C function), 208
rocsolver_dsyev_batched (C function), 209
rocsolver_dsyev_strided_batched (C func-

tion), 210
rocsolver_dsyevd (C function), 214
rocsolver_dsyevd_batched (C function), 215
rocsolver_dsyevd_strided_batched (C func-

tion), 216
rocsolver_dsygs2 (C function), 165
rocsolver_dsygs2_batched (C function), 167
rocsolver_dsygs2_strided_batched (C func-

tion), 168
rocsolver_dsygst (C function), 173
rocsolver_dsygst_batched (C function), 174
rocsolver_dsygst_strided_batched (C func-

tion), 175
rocsolver_dsygv (C function), 220
rocsolver_dsygv_batched (C function), 221
rocsolver_dsygv_strided_batched (C func-

tion), 223
rocsolver_dsygvd (C function), 229
rocsolver_dsygvd_batched (C function), 230

276 Index



rocSOLVER Documentation, Release 3.18.0

rocsolver_dsygvd_strided_batched (C func-
tion), 231

rocsolver_dsytd2 (C function), 150
rocsolver_dsytd2_batched (C function), 151
rocsolver_dsytd2_strided_batched (C func-

tion), 153
rocsolver_dsytf2 (C function), 100
rocsolver_dsytf2_batched (C function), 102
rocsolver_dsytf2_strided_batched (C func-

tion), 104
rocsolver_dsytrd (C function), 158
rocsolver_dsytrd_batched (C function), 159
rocsolver_dsytrd_strided_batched (C func-

tion), 160
rocsolver_dsytrf (C function), 105
rocsolver_dsytrf_batched (C function), 107
rocsolver_dsytrf_strided_batched (C func-

tion), 109
rocsolver_dtrtri (C function), 180
rocsolver_dtrtri_batched (C function), 181
rocsolver_dtrtri_strided_batched (C func-

tion), 182
rocsolver_fill (C type), 266
rocsolver_get_matrix (C function), 269
rocsolver_get_stream (C function), 268
rocsolver_get_vector (C function), 268
rocsolver_get_version_string (C function),

264
rocsolver_get_version_string_size (C

function), 265
rocsolver_handle (C type), 266
rocsolver_int (C type), 265
rocsolver_log_begin (C function), 263
rocsolver_log_end (C function), 263
rocsolver_log_flush_profile (C function),

264
rocsolver_log_restore_defaults (C func-

tion), 264
rocsolver_log_set_layer_mode (C function),

263
rocsolver_log_set_max_levels (C function),

264
rocsolver_log_write_profile (C function),

264
rocsolver_operation (C type), 266
rocsolver_sbdsqr (C function), 50
rocsolver_set_matrix (C function), 269
rocsolver_set_stream (C function), 268
rocsolver_set_vector (C function), 268
rocsolver_sgebd2 (C function), 140
rocsolver_sgebd2_batched (C function), 141
rocsolver_sgebd2_strided_batched (C func-

tion), 143
rocsolver_sgebrd (C function), 145

rocsolver_sgebrd_batched (C function), 147
rocsolver_sgebrd_strided_batched (C func-

tion), 149
rocsolver_sgelq2 (C function), 132
rocsolver_sgelq2_batched (C function), 133
rocsolver_sgelq2_strided_batched (C func-

tion), 134
rocsolver_sgelqf (C function), 136
rocsolver_sgelqf_batched (C function), 137
rocsolver_sgelqf_strided_batched (C func-

tion), 138
rocsolver_sgels (C function), 203
rocsolver_sgels_batched (C function), 204
rocsolver_sgels_strided_batched (C func-

tion), 206
rocsolver_sgeql2 (C function), 125
rocsolver_sgeql2_batched (C function), 126
rocsolver_sgeql2_strided_batched (C func-

tion), 127
rocsolver_sgeqlf (C function), 129
rocsolver_sgeqlf_batched (C function), 130
rocsolver_sgeqlf_strided_batched (C func-

tion), 131
rocsolver_sgeqr2 (C function), 111
rocsolver_sgeqr2_batched (C function), 112
rocsolver_sgeqr2_strided_batched (C func-

tion), 114
rocsolver_sgeqrf (C function), 115
rocsolver_sgeqrf_batched (C function), 116
rocsolver_sgeqrf_strided_batched (C func-

tion), 117
rocsolver_sgerq2 (C function), 118
rocsolver_sgerq2_batched (C function), 119
rocsolver_sgerq2_strided_batched (C func-

tion), 120
rocsolver_sgerqf (C function), 122
rocsolver_sgerqf_batched (C function), 123
rocsolver_sgerqf_strided_batched (C func-

tion), 124
rocsolver_sgesv (C function), 189
rocsolver_sgesv_batched (C function), 191
rocsolver_sgesv_strided_batched (C func-

tion), 192
rocsolver_sgesvd (C function), 238
rocsolver_sgesvd_batched (C function), 240
rocsolver_sgesvd_strided_batched (C func-

tion), 243
rocsolver_sgetf2 (C function), 94
rocsolver_sgetf2_batched (C function), 95
rocsolver_sgetf2_npvt (C function), 246
rocsolver_sgetf2_npvt_batched (C function),

247
rocsolver_sgetf2_npvt_strided_batched

(C function), 248

Index 277



rocSOLVER Documentation, Release 3.18.0

rocsolver_sgetf2_strided_batched (C func-
tion), 96

rocsolver_sgetrf (C function), 97
rocsolver_sgetrf_batched (C function), 98
rocsolver_sgetrf_npvt (C function), 249
rocsolver_sgetrf_npvt_batched (C function),

250
rocsolver_sgetrf_npvt_strided_batched

(C function), 251
rocsolver_sgetrf_strided_batched (C func-

tion), 99
rocsolver_sgetri (C function), 183
rocsolver_sgetri_batched (C function), 184
rocsolver_sgetri_npvt (C function), 252
rocsolver_sgetri_npvt_batched (C function),

253
rocsolver_sgetri_npvt_outofplace (C func-

tion), 259
rocsolver_sgetri_npvt_outofplace_batched

(C function), 260
rocsolver_sgetri_npvt_outofplace_strided_batched

(C function), 261
rocsolver_sgetri_npvt_strided_batched

(C function), 254
rocsolver_sgetri_outofplace (C function),

255
rocsolver_sgetri_outofplace_batched (C

function), 256
rocsolver_sgetri_outofplace_strided_batched

(C function), 257
rocsolver_sgetri_strided_batched (C func-

tion), 185
rocsolver_sgetrs (C function), 186
rocsolver_sgetrs_batched (C function), 187
rocsolver_sgetrs_strided_batched (C func-

tion), 188
rocsolver_side (C type), 267
rocsolver_slabrd (C function), 48
rocsolver_slarf (C function), 46
rocsolver_slarfb (C function), 47
rocsolver_slarfg (C function), 43
rocsolver_slarft (C function), 44
rocsolver_slaswp (C function), 42
rocsolver_slasyf (C function), 56
rocsolver_slatrd (C function), 52
rocsolver_sorg2l (C function), 60
rocsolver_sorg2r (C function), 57
rocsolver_sorgbr (C function), 61
rocsolver_sorgl2 (C function), 59
rocsolver_sorglq (C function), 59
rocsolver_sorgql (C function), 61
rocsolver_sorgqr (C function), 58
rocsolver_sorgtr (C function), 62
rocsolver_sorm2l (C function), 67

rocsolver_sorm2r (C function), 63
rocsolver_sormbr (C function), 69
rocsolver_sorml2 (C function), 65
rocsolver_sormlq (C function), 66
rocsolver_sormql (C function), 68
rocsolver_sormqr (C function), 64
rocsolver_sormtr (C function), 70
rocsolver_sposv (C function), 199
rocsolver_sposv_batched (C function), 200
rocsolver_sposv_strided_batched (C func-

tion), 201
rocsolver_spotf2 (C function), 88
rocsolver_spotf2_batched (C function), 89
rocsolver_spotf2_strided_batched (C func-

tion), 90
rocsolver_spotrf (C function), 91
rocsolver_spotrf_batched (C function), 92
rocsolver_spotrf_strided_batched (C func-

tion), 93
rocsolver_spotri (C function), 193
rocsolver_spotri_batched (C function), 194
rocsolver_spotri_strided_batched (C func-

tion), 195
rocsolver_spotrs (C function), 196
rocsolver_spotrs_batched (C function), 197
rocsolver_spotrs_strided_batched (C func-

tion), 198
rocsolver_sstedc (C function), 54
rocsolver_ssteqr (C function), 54
rocsolver_ssterf (C function), 53
rocsolver_ssyev (C function), 208
rocsolver_ssyev_batched (C function), 209
rocsolver_ssyev_strided_batched (C func-

tion), 210
rocsolver_ssyevd (C function), 214
rocsolver_ssyevd_batched (C function), 215
rocsolver_ssyevd_strided_batched (C func-

tion), 216
rocsolver_ssygs2 (C function), 165
rocsolver_ssygs2_batched (C function), 167
rocsolver_ssygs2_strided_batched (C func-

tion), 168
rocsolver_ssygst (C function), 173
rocsolver_ssygst_batched (C function), 174
rocsolver_ssygst_strided_batched (C func-

tion), 175
rocsolver_ssygv (C function), 220
rocsolver_ssygv_batched (C function), 221
rocsolver_ssygv_strided_batched (C func-

tion), 223
rocsolver_ssygvd (C function), 229
rocsolver_ssygvd_batched (C function), 230
rocsolver_ssygvd_strided_batched (C func-

tion), 231

278 Index



rocSOLVER Documentation, Release 3.18.0

rocsolver_ssytd2 (C function), 150
rocsolver_ssytd2_batched (C function), 151
rocsolver_ssytd2_strided_batched (C func-

tion), 153
rocsolver_ssytf2 (C function), 100
rocsolver_ssytf2_batched (C function), 102
rocsolver_ssytf2_strided_batched (C func-

tion), 104
rocsolver_ssytrd (C function), 158
rocsolver_ssytrd_batched (C function), 159
rocsolver_ssytrd_strided_batched (C func-

tion), 160
rocsolver_ssytrf (C function), 106
rocsolver_ssytrf_batched (C function), 107
rocsolver_ssytrf_strided_batched (C func-

tion), 109
rocsolver_status (C type), 267
rocsolver_storev (C type), 266
rocsolver_strtri (C function), 180
rocsolver_strtri_batched (C function), 181
rocsolver_strtri_strided_batched (C func-

tion), 182
rocsolver_zbdsqr (C function), 50
rocsolver_zgebd2 (C function), 140
rocsolver_zgebd2_batched (C function), 141
rocsolver_zgebd2_strided_batched (C func-

tion), 143
rocsolver_zgebrd (C function), 145
rocsolver_zgebrd_batched (C function), 146
rocsolver_zgebrd_strided_batched (C func-

tion), 148
rocsolver_zgelq2 (C function), 132
rocsolver_zgelq2_batched (C function), 133
rocsolver_zgelq2_strided_batched (C func-

tion), 134
rocsolver_zgelqf (C function), 135
rocsolver_zgelqf_batched (C function), 136
rocsolver_zgelqf_strided_batched (C func-

tion), 138
rocsolver_zgels (C function), 203
rocsolver_zgels_batched (C function), 204
rocsolver_zgels_strided_batched (C func-

tion), 205
rocsolver_zgeql2 (C function), 125
rocsolver_zgeql2_batched (C function), 126
rocsolver_zgeql2_strided_batched (C func-

tion), 127
rocsolver_zgeqlf (C function), 129
rocsolver_zgeqlf_batched (C function), 130
rocsolver_zgeqlf_strided_batched (C func-

tion), 131
rocsolver_zgeqr2 (C function), 111
rocsolver_zgeqr2_batched (C function), 112

rocsolver_zgeqr2_strided_batched (C func-
tion), 113

rocsolver_zgeqrf (C function), 115
rocsolver_zgeqrf_batched (C function), 116
rocsolver_zgeqrf_strided_batched (C func-

tion), 117
rocsolver_zgerq2 (C function), 118
rocsolver_zgerq2_batched (C function), 119
rocsolver_zgerq2_strided_batched (C func-

tion), 120
rocsolver_zgerqf (C function), 122
rocsolver_zgerqf_batched (C function), 123
rocsolver_zgerqf_strided_batched (C func-

tion), 124
rocsolver_zgesv (C function), 189
rocsolver_zgesv_batched (C function), 190
rocsolver_zgesv_strided_batched (C func-

tion), 192
rocsolver_zgesvd (C function), 238
rocsolver_zgesvd_batched (C function), 240
rocsolver_zgesvd_strided_batched (C func-

tion), 242
rocsolver_zgetf2 (C function), 94
rocsolver_zgetf2_batched (C function), 95
rocsolver_zgetf2_npvt (C function), 246
rocsolver_zgetf2_npvt_batched (C function),

247
rocsolver_zgetf2_npvt_strided_batched

(C function), 248
rocsolver_zgetf2_strided_batched (C func-

tion), 96
rocsolver_zgetrf (C function), 97
rocsolver_zgetrf_batched (C function), 98
rocsolver_zgetrf_npvt (C function), 249
rocsolver_zgetrf_npvt_batched (C function),

250
rocsolver_zgetrf_npvt_strided_batched

(C function), 251
rocsolver_zgetrf_strided_batched (C func-

tion), 99
rocsolver_zgetri (C function), 183
rocsolver_zgetri_batched (C function), 184
rocsolver_zgetri_npvt (C function), 252
rocsolver_zgetri_npvt_batched (C function),

253
rocsolver_zgetri_npvt_outofplace (C func-

tion), 259
rocsolver_zgetri_npvt_outofplace_batched

(C function), 259
rocsolver_zgetri_npvt_outofplace_strided_batched

(C function), 261
rocsolver_zgetri_npvt_strided_batched

(C function), 254
rocsolver_zgetri_outofplace (C function),

Index 279



rocSOLVER Documentation, Release 3.18.0

255
rocsolver_zgetri_outofplace_batched (C

function), 256
rocsolver_zgetri_outofplace_strided_batched

(C function), 257
rocsolver_zgetri_strided_batched (C func-

tion), 185
rocsolver_zgetrs (C function), 186
rocsolver_zgetrs_batched (C function), 187
rocsolver_zgetrs_strided_batched (C func-

tion), 188
rocsolver_zheev (C function), 211
rocsolver_zheev_batched (C function), 212
rocsolver_zheev_strided_batched (C func-

tion), 213
rocsolver_zheevd (C function), 217
rocsolver_zheevd_batched (C function), 218
rocsolver_zheevd_strided_batched (C func-

tion), 219
rocsolver_zhegs2 (C function), 169
rocsolver_zhegs2_batched (C function), 170
rocsolver_zhegs2_strided_batched (C func-

tion), 171
rocsolver_zhegst (C function), 176
rocsolver_zhegst_batched (C function), 177
rocsolver_zhegst_strided_batched (C func-

tion), 178
rocsolver_zhegv (C function), 224
rocsolver_zhegv_batched (C function), 225
rocsolver_zhegv_strided_batched (C func-

tion), 227
rocsolver_zhegvd (C function), 233
rocsolver_zhegvd_batched (C function), 234
rocsolver_zhegvd_strided_batched (C func-

tion), 236
rocsolver_zhetd2 (C function), 154
rocsolver_zhetd2_batched (C function), 155
rocsolver_zhetd2_strided_batched (C func-

tion), 156
rocsolver_zhetrd (C function), 162
rocsolver_zhetrd_batched (C function), 163
rocsolver_zhetrd_strided_batched (C func-

tion), 164
rocsolver_zlabrd (C function), 48
rocsolver_zlacgv (C function), 42
rocsolver_zlarf (C function), 45
rocsolver_zlarfb (C function), 46
rocsolver_zlarfg (C function), 43
rocsolver_zlarft (C function), 44
rocsolver_zlaswp (C function), 42
rocsolver_zlasyf (C function), 56
rocsolver_zlatrd (C function), 51
rocsolver_zposv (C function), 199
rocsolver_zposv_batched (C function), 200

rocsolver_zposv_strided_batched (C func-
tion), 201

rocsolver_zpotf2 (C function), 88
rocsolver_zpotf2_batched (C function), 89
rocsolver_zpotf2_strided_batched (C func-

tion), 90
rocsolver_zpotrf (C function), 91
rocsolver_zpotrf_batched (C function), 92
rocsolver_zpotrf_strided_batched (C func-

tion), 93
rocsolver_zpotri (C function), 193
rocsolver_zpotri_batched (C function), 194
rocsolver_zpotri_strided_batched (C func-

tion), 195
rocsolver_zpotrs (C function), 196
rocsolver_zpotrs_batched (C function), 197
rocsolver_zpotrs_strided_batched (C func-

tion), 198
rocsolver_zstedc (C function), 54
rocsolver_zsteqr (C function), 53
rocsolver_zsytf2 (C function), 100
rocsolver_zsytf2_batched (C function), 102
rocsolver_zsytf2_strided_batched (C func-

tion), 104
rocsolver_zsytrf (C function), 105
rocsolver_zsytrf_batched (C function), 107
rocsolver_zsytrf_strided_batched (C func-

tion), 109
rocsolver_ztrtri (C function), 180
rocsolver_ztrtri_batched (C function), 181
rocsolver_ztrtri_strided_batched (C func-

tion), 182
rocsolver_zung2l (C function), 75
rocsolver_zung2r (C function), 72
rocsolver_zungbr (C function), 76
rocsolver_zungl2 (C function), 74
rocsolver_zunglq (C function), 74
rocsolver_zungql (C function), 76
rocsolver_zungqr (C function), 73
rocsolver_zungtr (C function), 77
rocsolver_zunm2l (C function), 83
rocsolver_zunm2r (C function), 78
rocsolver_zunmbr (C function), 85
rocsolver_zunml2 (C function), 80
rocsolver_zunmlq (C function), 82
rocsolver_zunmql (C function), 84
rocsolver_zunmqr (C function), 79
rocsolver_zunmtr (C function), 86

S
STEDC_MIN_DC_SIZE (C macro), 35
SYTRF_BLOCKSIZE (C macro), 36
SYTRF_SYTF2_SWITCHSIZE (C macro), 36

280 Index



rocSOLVER Documentation, Release 3.18.0

T
THIN_SVD_SWITCH (C macro), 34

X
xxGQx_BLOCKSIZE (C macro), 31
xxGQx_xxGQx2_SWITCHSIZE (C macro), 31
xxGST_BLOCKSIZE (C macro), 35
xxGxQ_BLOCKSIZE (C macro), 32
xxGxQ_xxGxQ2_SWITCHSIZE (C macro), 32
xxMQx_BLOCKSIZE (C macro), 32
xxMxQ_BLOCKSIZE (C macro), 33
xxTRD_BLOCKSIZE (C macro), 34
xxTRD_xxTD2_SWITCHSIZE (C macro), 34

Index 281


	rocSOLVER User Guide
	Introduction
	Library overview
	Currently implemented functionality
	LAPACK auxiliary functions
	LAPACK main functions
	LAPACK-like functions


	Building and Installation
	Prerequisites
	Installing from pre-built packages
	Building & installing from source
	Using the install.sh script
	Manual building and installation


	Using rocSOLVER
	QR factorization of a single matrix
	QR factorization of a batch of matrices
	Strided_batched version
	Batched version


	Memory Model
	Automatic workspace
	User-managed workspace
	Minimum required size
	Using an environment variable
	Using helper functions

	User-owned workspace

	Multi-level Logging
	Logging modes
	Trace logging
	Bench logging
	Profile logging

	Initialization and set-up
	Example code
	Kernel logging
	Multiple host threads

	Clients
	Testing rocSOLVER
	Benchmarking rocSOLVER
	rocSOLVER sample code


	rocSOLVER Library Design Guide
	Introduction
	Batched rocSOLVER
	Tuning rocSOLVER Performance
	geqr2/geqrf and geql2/geqlf functions
	GEQxF_BLOCKSIZE
	GEQxF_GEQx2_SWITCHSIZE

	gerq2/gerqf and gelq2/gelqf functions
	GExQF_BLOCKSIZE
	GExQF_GExQ2_SWITCHSIZE

	org2r/orgqr, org2l/orgql, ung2r/ungqr and ung2l/ungql functions
	xxGQx_BLOCKSIZE
	xxGQx_xxGQx2_SWITCHSIZE

	orgr2/orgrq, orgl2/orglq, ungr2/ungrq and ungl2/unglq functions
	xxGxQ_BLOCKSIZE
	xxGxQ_xxGxQ2_SWITCHSIZE

	orm2r/ormqr, orm2l/ormql, unm2r/unmqr and unm2l/unmql functions
	xxMQx_BLOCKSIZE

	ormr2/ormrq, orml2/ormlq, unmr2/unmrq and unml2/unmlq functions
	xxMxQ_BLOCKSIZE

	gebd2/gebrd and labrd functions
	GEBRD_BLOCKSIZE
	GEBRD_GEBD2_SWITCHSIZE

	gesvd function
	THIN_SVD_SWITCH

	sytd2/sytrd, hetd2/hetrd and latrd functions
	xxTRD_BLOCKSIZE
	xxTRD_xxTD2_SWITCHSIZE

	sygs2/sygst and hegs2/hegst functions
	xxGST_BLOCKSIZE

	syevd, heevd and stedc functions
	STEDC_MIN_DC_SIZE

	potf2/potrf functions
	POTRF_BLOCKSIZE
	POTRF_POTF2_SWITCHSIZE

	sytf2/sytrf and lasyf functions
	SYTRF_BLOCKSIZE
	SYTRF_SYTF2_SWITCHSIZE

	getf2/getrf functions
	GETF2_MAX_COLS
	GETF2_MAX_THDS
	GETF2_OPTIM_NGRP
	GETRF_NUM_INTERVALS
	GETRF_INTERVALS
	GETRF_BLKSIZES
	GETRF_BATCH_NUM_INTERVALS
	GETRF_BATCH_INTERVALS
	GETRF_BATCH_BLKSIZES
	GETRF_NPVT_NUM_INTERVALS
	GETRF_NPVT_INTERVALS
	GETRF_NPVT_BLKSIZES
	GETRF_NPVT_BATCH_NUM_INTERVALS
	GETRF_NPVT_BATCH_INTERVALS
	GETRF_NPVT_BATCH_BLKSIZES

	getri function
	GETRI_MAX_COLS
	GETRI_TINY_SIZE
	GETRI_NUM_INTERVALS
	GETRI_INTERVALS
	GETRI_BLKSIZES
	GETRI_BATCH_TINY_SIZE
	GETRI_BATCH_NUM_INTERVALS
	GETRI_BATCH_INTERVALS
	GETRI_BATCH_BLKSIZES

	trtri function
	TRTRI_MAX_COLS
	TRTRI_NUM_INTERVALS
	TRTRI_INTERVALS
	TRTRI_BLKSIZES
	TRTRI_BATCH_NUM_INTERVALS
	TRTRI_BATCH_INTERVALS
	TRTRI_BATCH_BLKSIZES


	Contributing Guidelines

	rocSOLVER API
	Types
	Additional types
	rocblas_direct
	rocblas_storev
	rocblas_svect
	rocblas_evect
	rocblas_workmode
	rocblas_eform


	LAPACK Auxiliary Functions
	Vector and Matrix manipulations
	rocsolver_<type>lacgv()
	rocsolver_<type>laswp()

	Householder reflections
	rocsolver_<type>larfg()
	rocsolver_<type>larft()
	rocsolver_<type>larf()
	rocsolver_<type>larfb()

	Bidiagonal forms
	rocsolver_<type>labrd()
	rocsolver_<type>bdsqr()

	Tridiagonal forms
	rocsolver_<type>latrd()
	rocsolver_<type>sterf()
	rocsolver_<type>steqr()
	rocsolver_<type>stedc()

	Symmetric matrices
	rocsolver_<type>lasyf()

	Orthonormal matrices
	rocsolver_<type>org2r()
	rocsolver_<type>orgqr()
	rocsolver_<type>orgl2()
	rocsolver_<type>orglq()
	rocsolver_<type>org2l()
	rocsolver_<type>orgql()
	rocsolver_<type>orgbr()
	rocsolver_<type>orgtr()
	rocsolver_<type>orm2r()
	rocsolver_<type>ormqr()
	rocsolver_<type>orml2()
	rocsolver_<type>ormlq()
	rocsolver_<type>orm2l()
	rocsolver_<type>ormql()
	rocsolver_<type>ormbr()
	rocsolver_<type>ormtr()

	Unitary matrices
	rocsolver_<type>ung2r()
	rocsolver_<type>ungqr()
	rocsolver_<type>ungl2()
	rocsolver_<type>unglq()
	rocsolver_<type>ung2l()
	rocsolver_<type>ungql()
	rocsolver_<type>ungbr()
	rocsolver_<type>ungtr()
	rocsolver_<type>unm2r()
	rocsolver_<type>unmqr()
	rocsolver_<type>unml2()
	rocsolver_<type>unmlq()
	rocsolver_<type>unm2l()
	rocsolver_<type>unmql()
	rocsolver_<type>unmbr()
	rocsolver_<type>unmtr()


	LAPACK Functions
	Triangular factorizations
	rocsolver_<type>potf2()
	rocsolver_<type>potf2_batched()
	rocsolver_<type>potf2_strided_batched()
	rocsolver_<type>potrf()
	rocsolver_<type>potrf_batched()
	rocsolver_<type>potrf_strided_batched()
	rocsolver_<type>getf2()
	rocsolver_<type>getf2_batched()
	rocsolver_<type>getf2_strided_batched()
	rocsolver_<type>getrf()
	rocsolver_<type>getrf_batched()
	rocsolver_<type>getrf_strided_batched()
	rocsolver_<type>sytf2()
	rocsolver_<type>sytf2_batched()
	rocsolver_<type>sytf2_strided_batched()
	rocsolver_<type>sytrf()
	rocsolver_<type>sytrf_batched()
	rocsolver_<type>sytrf_strided_batched()

	Orthogonal factorizations
	rocsolver_<type>geqr2()
	rocsolver_<type>geqr2_batched()
	rocsolver_<type>geqr2_strided_batched()
	rocsolver_<type>geqrf()
	rocsolver_<type>geqrf_batched()
	rocsolver_<type>geqrf_strided_batched()
	rocsolver_<type>gerq2()
	rocsolver_<type>gerq2_batched()
	rocsolver_<type>gerq2_strided_batched()
	rocsolver_<type>gerqf()
	rocsolver_<type>gerqf_batched()
	rocsolver_<type>gerqf_strided_batched()
	rocsolver_<type>geql2()
	rocsolver_<type>geql2_batched()
	rocsolver_<type>geql2_strided_batched()
	rocsolver_<type>geqlf()
	rocsolver_<type>geqlf_batched()
	rocsolver_<type>geqlf_strided_batched()
	rocsolver_<type>gelq2()
	rocsolver_<type>gelq2_batched()
	rocsolver_<type>gelq2_strided_batched()
	rocsolver_<type>gelqf()
	rocsolver_<type>gelqf_batched()
	rocsolver_<type>gelqf_strided_batched()

	Problem and matrix reductions
	rocsolver_<type>gebd2()
	rocsolver_<type>gebd2_batched()
	rocsolver_<type>gebd2_strided_batched()
	rocsolver_<type>gebrd()
	rocsolver_<type>gebrd_batched()
	rocsolver_<type>gebrd_strided_batched()
	rocsolver_<type>sytd2()
	rocsolver_<type>sytd2_batched()
	rocsolver_<type>sytd2_strided_batched()
	rocsolver_<type>hetd2()
	rocsolver_<type>hetd2_batched()
	rocsolver_<type>hetd2_strided_batched()
	rocsolver_<type>sytrd()
	rocsolver_<type>sytrd_batched()
	rocsolver_<type>sytrd_strided_batched()
	rocsolver_<type>hetrd()
	rocsolver_<type>hetrd_batched()
	rocsolver_<type>hetrd_strided_batched()
	rocsolver_<type>sygs2()
	rocsolver_<type>sygs2_batched()
	rocsolver_<type>sygs2_strided_batched()
	rocsolver_<type>hegs2()
	rocsolver_<type>hegs2_batched()
	rocsolver_<type>hegs2_strided_batched()
	rocsolver_<type>sygst()
	rocsolver_<type>sygst_batched()
	rocsolver_<type>sygst_strided_batched()
	rocsolver_<type>hegst()
	rocsolver_<type>hegst_batched()
	rocsolver_<type>hegst_strided_batched()

	Linear-systems solvers
	rocsolver_<type>trtri()
	rocsolver_<type>trtri_batched()
	rocsolver_<type>trtri_strided_batched()
	rocsolver_<type>getri()
	rocsolver_<type>getri_batched()
	rocsolver_<type>getri_strided_batched()
	rocsolver_<type>getrs()
	rocsolver_<type>getrs_batched()
	rocsolver_<type>getrs_strided_batched()
	rocsolver_<type>gesv()
	rocsolver_<type>gesv_batched()
	rocsolver_<type>gesv_strided_batched()
	rocsolver_<type>potri()
	rocsolver_<type>potri_batched()
	rocsolver_<type>potri_strided_batched()
	rocsolver_<type>potrs()
	rocsolver_<type>potrs_batched()
	rocsolver_<type>potrs_strided_batched()
	rocsolver_<type>posv()
	rocsolver_<type>posv_batched()
	rocsolver_<type>posv_strided_batched()

	Least-squares solvers
	rocsolver_<type>gels()
	rocsolver_<type>gels_batched()
	rocsolver_<type>gels_strided_batched()

	Symmetric eigensolvers
	rocsolver_<type>syev()
	rocsolver_<type>syev_batched()
	rocsolver_<type>syev_strided_batched()
	rocsolver_<type>heev()
	rocsolver_<type>heev_batched()
	rocsolver_<type>heev_strided_batched()
	rocsolver_<type>syevd()
	rocsolver_<type>syevd_batched()
	rocsolver_<type>syevd_strided_batched()
	rocsolver_<type>heevd()
	rocsolver_<type>heevd_batched()
	rocsolver_<type>heevd_strided_batched()
	rocsolver_<type>sygv()
	rocsolver_<type>sygv_batched()
	rocsolver_<type>sygv_strided_batched()
	rocsolver_<type>hegv()
	rocsolver_<type>hegv_batched()
	rocsolver_<type>hegv_strided_batched()
	rocsolver_<type>sygvd()
	rocsolver_<type>sygvd_batched()
	rocsolver_<type>sygvd_strided_batched()
	rocsolver_<type>hegvd()
	rocsolver_<type>hegvd_batched()
	rocsolver_<type>hegvd_strided_batched()

	Singular value decomposition
	rocsolver_<type>gesvd()
	rocsolver_<type>gesvd_batched()
	rocsolver_<type>gesvd_strided_batched()


	Lapack-like Functions
	Triangular factorizations
	rocsolver_<type>getf2_npvt()
	rocsolver_<type>getf2_npvt_batched()
	rocsolver_<type>getf2_npvt_strided_batched()
	rocsolver_<type>getrf_npvt()
	rocsolver_<type>getrf_npvt_batched()
	rocsolver_<type>getrf_npvt_strided_batched()

	Linear-systems solvers
	rocsolver_<type>getri_npvt()
	rocsolver_<type>getri_npvt_batched()
	rocsolver_<type>getri_npvt_strided_batched()
	rocsolver_<type>getri_outofplace()
	rocsolver_<type>getri_outofplace_batched()
	rocsolver_<type>getri_outofplace_strided_batched()
	rocsolver_<type>getri_npvt_outofplace()
	rocsolver_<type>getri_npvt_outofplace_batched()
	rocsolver_<type>getri_npvt_outofplace_strided_batched()


	Logging Functions and Library Information
	Logging functions
	rocsolver_log_begin()
	rocsolver_log_end()
	rocsolver_log_set_layer_mode()
	rocsolver_log_set_max_levels()
	rocsolver_log_restore_defaults()
	rocsolver_log_write_profile()
	rocsolver_log_flush_profile()

	Library information
	rocsolver_get_version_string()
	rocsolver_get_version_string_size()


	Deprecated
	Types
	rocsolver_int
	rocsolver_handle
	rocsolver_direction
	rocsolver_storev
	rocsolver_operation
	rocsolver_fill
	rocsolver_diagonal
	rocsolver_side
	rocsolver_status

	Auxiliary functions
	rocsolver_create_handle()
	rocsolver_destroy_handle()
	rocsolver_set_stream()
	rocsolver_get_stream()
	rocsolver_set_vector()
	rocsolver_get_vector()
	rocsolver_set_matrix()
	rocsolver_get_matrix()



	License & Attributions
	Index

